期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
中国碳收支:1980~2021年 被引量:4
1
作者 夏晓圣 任培阳 +17 位作者 王旭辉 刘丹 陈修治 丹利 何斌 何洪林 居为民 梁敏琪 陆星劼 彭静 覃章才 夏江周 郑博 魏静 乐旭 于贵瑞 朴世龙 袁文平 《Science Bulletin》 SCIE EI CAS CSCD 2024年第1期114-124,共11页
As one of the world's largest emitters of greenhouse gases,China has set itself the ambitious goal of achieving carbon peaking and carbon neutrality.Therefore,it is crucial to quantify the magnitude and trend of s... As one of the world's largest emitters of greenhouse gases,China has set itself the ambitious goal of achieving carbon peaking and carbon neutrality.Therefore,it is crucial to quantify the magnitude and trend of sources and sinks of atmospheric carbon dioxide(CO_(2)),and to monitor China's progress toward these goals.Using state-of-the-art datasets and models,this study comprehensively estimated the anthropogenic CO_(2)emissions from energy,industrial processes and product use,and waste along with natural sources and sinks of CO_(2)for all of China during 1980-2021.To recognize the differences among various methods of estimating greenhouse emissions,the estimates are compared with China's National Greenhouse Gas Inventories(NGHGIs)for 1994,2005,2010,2012,and 2014.Anthropogenic CO_(2)emissions in China have increased by 7.39 times from 1980 to 12.77 Gt CO_(2)a^(-1)in 2021.While benefiting from ecological projects(e.g.,Three Norths Shelter Forest System Project),the land carbon sink in China has reached 1.65 Gt CO_(2)a^(-1)averaged through 2010-2021,which is almost 15.81 times that of the carbon sink in the 1980s.On average,China's terrestrial ecosystems offset 14.69%±2.49%of anthropogenic CO_(2)emissions through 2010-2021.Two provincial-level administrative regions of China,Xizang and Qinghai,have achieved carbon neutrality according to our estimates,but nearly half of the administrative regions of China have terrestrial carbon sink offsets of less than 10%of anthropogenic CO_(2)emissions.This study indicated a high level of consistency between NGHGIs and various datasets used for estimating fossil CO_(2)emissions,but found notable differences for land carbon sinks.Future estimates of the terrestrial carbon sinks of NGHGIs urgently need to be verified with process-based models which integrate the comprehensive carbon cycle processes. 展开更多
关键词 CO_(2)emission Land carbon sink China Carbon neutrality Carbon budget
原文传递
Estimating Aboveground Carbon Dynamic of China Using Optical and Microwave Remote-Sensing Datasets from 2013 to 2019 被引量:1
2
作者 Zhongbing Chang Lei Fan +25 位作者 Jean-Pierre Wigneron Ying-Ping Wang Philippe Ciais Jérôme Chave Rasmus Fensholt Jing Mchen Wenping Yuan Weimin Ju Xin Li Fei Jiang Mousong Wu xiuzhi chen Yuanwei Qin Frédéric Frappart Xiaojun Li Mengjia Wang Xiangzhuo Liu Xuli Tang Sanaa Hobeichi Mengxiao Yu Mingguo Ma Jianguang Wen Qing Xiao Weiyu Shi Dexin Liu Junhua Yan 《Journal of Remote Sensing》 2023年第1期19-34,共16页
Over the past 2 to 3 decades,Chinese forests are estimated to act as a large carbon sink,yet the magnitude and spatial patterns of this sink differ considerably among studies.Using 3 microwave(L-and X-band vegetation ... Over the past 2 to 3 decades,Chinese forests are estimated to act as a large carbon sink,yet the magnitude and spatial patterns of this sink differ considerably among studies.Using 3 microwave(L-and X-band vegetation optical depth[VOD])and 3 optical(normalized difference vegetation index,leaf area index,and tree cover)remote-sensing vegetation products,this study compared the estimated live woody aboveground biomass carbon(AGC)dynamics over China between 2013 and 2019.Our results showed that tree cover has the highest spatial consistency with 3 published AGC maps(mean correlation value R=0.84),followed by L-VOD(R=0.83),which outperform the other VODs.An AGC estimation model was proposed to combine all indices to estimate the annual AGC dynamics in China during 2013 to 2019.The performance of the AGC estimation model was good(root mean square error=0.05 Pg C and R^(2)=0.90 with a mean relative uncertainty of 9.8% at pixel scale[0.25°]).Results of the AGC estimation model showed that carbon uptake by the forests in China was about+0.17 Pg C year^(-1) from 2013 to 2019.At the regional level,provinces in southwest China including Guizhou(+22.35 Tg C year^(-1)),Sichuan(+14.49 Tg C year^(-1)),and Hunan(+11.42 Tg C year^(-1))provinces had the highest carbon sink rates during 2013 to 2019.Most of the carbon-sink regions have been afforested recently,implying that afforestation and ecological engineering projects have been effective means for carbon sequestration in these regions. 展开更多
关键词 estimation REMOTE MICROWAVE
原文传递
Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China 被引量:1
3
作者 Yuhang Dai Fanxi Gong +6 位作者 Xueqin Yang xiuzhi chen Yongxian Su Liyang Liu Jianping Wu Xiaodong Liu Qingling Sun 《Journal of Plant Ecology》 SCIE CSCD 2022年第2期320-334,共15页
Tropical and subtropical evergreen broad-leaved forests(EBFs)and needle-leaved forests(ENFs)in China exhibit complex leaf shedding strategies in responses to soil water availability,vapor pressure deficits(VPDs)and su... Tropical and subtropical evergreen broad-leaved forests(EBFs)and needle-leaved forests(ENFs)in China exhibit complex leaf shedding strategies in responses to soil water availability,vapor pressure deficits(VPDs)and sunlight availability.However,the seasonal variations and triggers of litterfall differ significantly in tropical/subtropical forests,and there are still many uncertainties.Herein,we aim to explore the distinct climatic factors of seasonal litterfall in a climate–phenology correlation framework.We collected seasonal litterfall data from 85 sites across tropical/subtropical China and used linear correlation coefficients between sunlight and rainfall to partition synchronous/asynchronous climates.Additional phase analysis and structural equation model analysis were conducted to model the climatic triggers of tropical phenology.Results indicated two types of tropical litterfall phenology under two types of climates.In synchronous climates,where seasonal sunlight and rainfall are positively correlated,the litterfall peak of the unimodal phenology and the first litterfall peak of the bimodal phenology both happen at the end of dry season.The second litterfall peak of the bimodal phenology occurs at the end of rainy season due to water stress.In asynchronous climates,where seasonal sunlight and rainfall are negatively correlated,VPD shows consistent seasonal variations with incoming sunlight.The leaf senescence is accelerated at the end of dry season by higher VPD;while soil water deficit is in anti-phase with sunlight and mainly controls the second litterfall peak of the bimodal phenology in EBF.Our findings provide an important reference for modeling tropical phenology in Earth system models. 展开更多
关键词 tropical/subtropical forests PHENOLOGY leaf shedding strategy LITTERFALL water stress REJUVENATION
原文传递
A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests 被引量:2
4
作者 Xueqin Yang Jianping Wu +18 位作者 xiuzhi chen Philippe Ciais Fabienne Maignan Wenping Yuan Shilong Piao Song Yang Fanxi Gong Yongxian Su Yuhang Dai Liyang Liu Haicheng Zhang Damien Bonal Hui Liu Guixing chen Haibo Lu Shengbiao Wu Lei Fan Pierre Gentine SJoseph Wright 《The Innovation》 2021年第4期27-34,共8页
Relationships among productivity,leaf phenology,and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests,which contribute 25% of terrestria... Relationships among productivity,leaf phenology,and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests,which contribute 25% of terrestrial productivity.On the one hand,as moisture availability declines,trees shed leaves to reduce transpiration and the risk of hydraulic failure.On the other hand,increases in light availability promote the replacement of senescent leaves to increase productivity.Here,we provide a comprehensive framework that relates the seasonality of climate,leaf abscission,and leaf productivity across the evergreen broadleaved tropical/subtropical forest biome.The seasonal correlation between rainfall and light availability varies from strongly negative to strongly positive across the tropics and maps onto the seasonal correlation between litterfall mass and productivity for 68 forests.Where rainfall and light covary positively,litterfall and productivity also covary positively and are always greater in the wetter sunnier season.Where rainfall and light covary negatively,litterfall and productivity are always greater in the drier and sunnier season if moisture supplies remain adequate;otherwise productivity is smaller in the drier sunnier season.This framework will improve the representation of tropical/subtropical forests in Earth system models and suggests how phenology and productivity will change as climate change alters the seasonality of cloud cover and rainfall across tropical/subtropical forests. 展开更多
关键词 tropical forest leaf abscission and productivity plant adaptive strategy climate and phenology regime climatic driver
原文传递
Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit 被引量:2
5
作者 Yawen Wang Wenfang Xu +8 位作者 Wenping Yuan xiuzhi chen Bingwei Zhang Lei Fan Bin He Zhongmin Hu Shuguang Liu Wei Liu Shilong Piao 《The Innovation》 2021年第4期74-81,共8页
It has been long established that the terrestrial vegetation in spring has stronger photosynthetic capability than in autumn.However,this study challenges this consensus by comparing photosynthetic capability of terre... It has been long established that the terrestrial vegetation in spring has stronger photosynthetic capability than in autumn.However,this study challenges this consensus by comparing photosynthetic capability of terrestrial vegetation between the spring and autumn seasons based on measurements of 100 in situ eddy covariance towers over global extratropical ecosystems.At the majority of these sites,photosynthetic capability,indicated by light use efficiency(LUE)and apparent quantum efficiency,is significantly higher in autumn than in spring,due to lower atmosphere vapor pressure deficit(VPD)at the same air temperature.Seasonal VPD differences also substantially explain the interannual variability of the differences in photosynthetic capability between spring and autumn.We further reveal that VPD in autumn is significantly lower than in spring over 74.14% of extratropical areas,based on a global climate dataset.In contrast,LUE derived from a data-driven vegetation production dataset is significantly higher in autumn in over 61.02% of extratropical vegetated areas.Six Earth system models consistently projected continuous larger VPD values in spring compared with autumn,which implies that the impacts on vegetation growth will long exist and should be adequately considered when assessing the seasonal responses of terrestrial ecosystems to future climate conditions. 展开更多
关键词 light use efficiency vapor pressure deficit vegetation index carbon cycle
原文传递
Digitizing the thermal and hydrological parameters of land surface in subtropical China using AMSR-E brightness temperatures
6
作者 Yongxian Su xiuzhi chen +2 位作者 Hua Su Liyang Liu Jishan Liao 《International Journal of Digital Earth》 SCIE EI 2017年第7期687-700,共14页
Digitizing the land surface temperature(T_(s))and surface soil moisture(m _(v))is essential for developing the intelligent Digital Earth.Here,we developed a two parameter physical-based passive microwave remote sensin... Digitizing the land surface temperature(T_(s))and surface soil moisture(m _(v))is essential for developing the intelligent Digital Earth.Here,we developed a two parameter physical-based passive microwave remote sensing model for jointly retrieving T_(s) and m_(v) using the dual-polarized T_(b) of Aqua satellite advanced microwave scanning radiometer(AMSR-E)C-band(6.9 GHz)based on the simplified radiative transfer equation.Validation using in situ T_(s) and m_(v) in southern China showed the average root mean square errors(RMSE)of T s and m_(v) retrievals reach 2.42 K(R^(2)=0.61,n=351)and 0.025 g cm^(−3)(R^(2)=0.68,n=663),respectively.The results were also validated using global in situ T_(s)(n=2362)and m_(v)(n=1657)of International Soil Moisture Network.The corresponding RMSE are 3.44 k(R 2=0.86)and 0.039 g cm^(−3)(R^(2)=0.83),respectively.The monthly variations of model-derived Ts and mv are highly consistent with those of the Moderate Resolution Imaging Spectroradiometer T_(s)(R^(2)=0.57;RMSE=2.91 k)and ECV_SM m_(v)(R^(2)=0.51;RMSE=0.045 g cm^(−3)),respectively.Overall,this paper indicates an effective way to jointly modeling T_(s) and m_(v) using passive microwave remote sensing. 展开更多
关键词 Surface soil moisture land surface temperature physical-based radiative transfer model AMSR-E brightness temperatures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部