In this paper,several new energy identities of metamaterial Maxwell’s equations with the perfectly electric conducting(PEC)boundary condition are proposed and proved.These new energy identities are different from the...In this paper,several new energy identities of metamaterial Maxwell’s equations with the perfectly electric conducting(PEC)boundary condition are proposed and proved.These new energy identities are different from the Poynting theorem.By using these new energy identities,it is proved that the Yee scheme on non-uniform rectangular meshes is stable in the discrete L2 and H1 norms when the Courant-Friedrichs-Lewy(CFL)condition is satisfied.Numerical experiments in twodimension(2D)and 3D are carried out and confirm our analysis,and the superconvergence in the discrete H1 norm is found.展开更多
基金supported by the National Natural Science Foundation of China Grant No.11671233 and the Shandong Provincial Science and Technology Development Program Grant No.2018GGX101036.
文摘In this paper,several new energy identities of metamaterial Maxwell’s equations with the perfectly electric conducting(PEC)boundary condition are proposed and proved.These new energy identities are different from the Poynting theorem.By using these new energy identities,it is proved that the Yee scheme on non-uniform rectangular meshes is stable in the discrete L2 and H1 norms when the Courant-Friedrichs-Lewy(CFL)condition is satisfied.Numerical experiments in twodimension(2D)and 3D are carried out and confirm our analysis,and the superconvergence in the discrete H1 norm is found.