Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize t...Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time.There is great industrial and academic interest in DTs for EAM.However,previous review studies have predominately focused on technical aspects using limited life-cycle perspectives,failing to holistically synthesize DTs for EAM from the managerial point of view.Based on a systematic literature review,we introduce an analytical framework for describing DTs for EAM,which encompasses three levels:DT 1.0 for technical EAM,DT 2.0 for technical-human EAM,and DT 3.0 for technical-environmental EAM.Using this framework,we identify what is known,what is unknown,and future directions at each level.DT 1.0 addresses issues of asset quality,progress,and cost management,generating technical value.It lacks multi-objective self-adaptive EAM,however,and suffers from high application cost.It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0.DT 2.0 accommodates issues of human-machine symbiosis,safety,and flexibility management,generating managerial value beyond the technical performance improvement of engineering assets.However,DT 2.0 currently lacks the automation and security of human-machine interactions and the managerial value related to humans is not prominent enough.Future research needs to align technical and managerial value with highly automated and secure DT 2.0.DT 3.0 covers issues of participatory governance,organization management,sustainable development,and resilience enhancement,generating macro social value.Yet it suffers from organizational fragmentation and can only address limited social governance issues.Numerous research opportunities exist to coordinate different stakeholders.Similarly,future research opportunities exist to develop DT 3.0 in a more open and complex system.展开更多
基金supported by the National Natural Science Foundation of China(72001160)the National Social Science Fund of China(19VDL001 and 18ZDA043)+2 种基金the National Key Research and Development(R&D)Program of China(2022YFC3801700)the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement(101034337)the Support Program for Young and Middle-Tech Leading Talents of Tongji University.
文摘Effective engineering asset management(EAM)is critical to economic development and improving livability in society,but its complexity often impedes optimal asset functionalities.Digital twins(DTs)could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time.There is great industrial and academic interest in DTs for EAM.However,previous review studies have predominately focused on technical aspects using limited life-cycle perspectives,failing to holistically synthesize DTs for EAM from the managerial point of view.Based on a systematic literature review,we introduce an analytical framework for describing DTs for EAM,which encompasses three levels:DT 1.0 for technical EAM,DT 2.0 for technical-human EAM,and DT 3.0 for technical-environmental EAM.Using this framework,we identify what is known,what is unknown,and future directions at each level.DT 1.0 addresses issues of asset quality,progress,and cost management,generating technical value.It lacks multi-objective self-adaptive EAM,however,and suffers from high application cost.It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0.DT 2.0 accommodates issues of human-machine symbiosis,safety,and flexibility management,generating managerial value beyond the technical performance improvement of engineering assets.However,DT 2.0 currently lacks the automation and security of human-machine interactions and the managerial value related to humans is not prominent enough.Future research needs to align technical and managerial value with highly automated and secure DT 2.0.DT 3.0 covers issues of participatory governance,organization management,sustainable development,and resilience enhancement,generating macro social value.Yet it suffers from organizational fragmentation and can only address limited social governance issues.Numerous research opportunities exist to coordinate different stakeholders.Similarly,future research opportunities exist to develop DT 3.0 in a more open and complex system.