The COVID-19 lockdowns led to abrupt reductions in human-related emissions worldwide and had an unintended impact on air quality improvement.However,quantifying this impact is difficult as meteorological conditions ma...The COVID-19 lockdowns led to abrupt reductions in human-related emissions worldwide and had an unintended impact on air quality improvement.However,quantifying this impact is difficult as meteorological conditions may mask the real effect of changes in emissions on the observed concentrations of pollutants.Based on the air quality and meteorological data at 35 sites in Beijing from 2015 to 2020,a machine learning technique was applied to decouple the impacts of meteorology and emissions on the concentrations of air pollutants.The results showed that the real(“deweathered”)concentrations of air pollutants(expect for O 3)dropped significantly due to lockdown measures.Compared with the scenario without lockdowns(predicted concentrations),the observed values of PM_(2.5),PM_(10),SO_(2),NO_(2),and CO during lockdowns decreased by 39.4%,50.1%,51.8%,43.1%,and 35.1%,respectively.In addition,a significant decline for NO_(2)and CO was found at the background sites(51%and 37.8%)rather than the traffic sites(37.1%and 35.5%),which is different from the common belief.While the primary emissions reduced during the lockdown period,episodic haze events still occurred due to unfavorable meteorological conditions.Thus,developing an optimized strategy to tackle air pollution in Beijing is essential in the future.展开更多
China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoti...China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoting synergetic control of these two issues.The Synergetic Roadmap project was launched in 2021 to track and analyze the progress of synergetic control in China by developing and monitoring key indicators.The Synergetic Roadmap 2022 report is the first annual update,featuring 20 indicators across five aspects:synergetic governance system and practices,progress in structural transition,air pollution and associated weather-climate interactions,sources,sinks,and mitigation pathway of atmospheric composition,and health impacts and benefits of coordinated control.Compared to the comprehensive review presented in the 2021 report,the Synergetic Roadmap 2022 report places particular emphasis on progress in 2021 with highlights on actions in key sectors and the relevant milestones.These milestones include the proportion of non-fossil power generation capacity surpassing coal-fired capacity for the first time,a decline in the production of crude steel and cement after years of growth,and the surging penetration of electric vehicles.Additionally,in 2022,China issued the first national policy that synergizes abatements of pollution and carbon emissions,marking a new era for China's pollution-carbon co-control.These changes highlight China's efforts to reshape its energy,economic,and transportation structures to meet the demand for synergetic control and sustainable development.Consequently,the country has witnessed a slowdown in carbon emission growth,improved air quality,and increased health benefits in recent years.展开更多
We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to g...We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO4^2–, NO3^–, and NH4^+ concentrations were 8.3,12.5, and 14.1 μg m^–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m^(–3), respectively, at the rural site.The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity(with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events.The ISORROPIA II model was used to predict the aerosol pH, which had a mean(range) of 5.0(4.9–5.2) and 5.3(4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO4^2– and NO3^– in haze.We also analyzed the sensitivity of the aerosol p H to changes in the concentrations of SO4^2–, NO3^–, and NH4^+ under haze conditions. The aerosol p H was more sensitive to the SO4^2– and NH4^+ concentrations with opposing trends, than to the NO3^– concentrations. The sensitivity of the p H was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant number 42077204)the National Key Research and Development Project(Grant number 2017YFC0210103)with data support provided by the National Earth System Science Data Center,National Science&Technology Infrastructure of China(http://www.geodata.cn).
文摘The COVID-19 lockdowns led to abrupt reductions in human-related emissions worldwide and had an unintended impact on air quality improvement.However,quantifying this impact is difficult as meteorological conditions may mask the real effect of changes in emissions on the observed concentrations of pollutants.Based on the air quality and meteorological data at 35 sites in Beijing from 2015 to 2020,a machine learning technique was applied to decouple the impacts of meteorology and emissions on the concentrations of air pollutants.The results showed that the real(“deweathered”)concentrations of air pollutants(expect for O 3)dropped significantly due to lockdown measures.Compared with the scenario without lockdowns(predicted concentrations),the observed values of PM_(2.5),PM_(10),SO_(2),NO_(2),and CO during lockdowns decreased by 39.4%,50.1%,51.8%,43.1%,and 35.1%,respectively.In addition,a significant decline for NO_(2)and CO was found at the background sites(51%and 37.8%)rather than the traffic sites(37.1%and 35.5%),which is different from the common belief.While the primary emissions reduced during the lockdown period,episodic haze events still occurred due to unfavorable meteorological conditions.Thus,developing an optimized strategy to tackle air pollution in Beijing is essential in the future.
基金supported by the National Natural Science Foundation of China,China(72243008,41921005,and 72140003)the Energy Foundation,China.
文摘China is now confronting the intertwined challenges of air pollution and climate change.Given the high synergies between air pollution abatement and climate change mitigation,the Chinese government is actively promoting synergetic control of these two issues.The Synergetic Roadmap project was launched in 2021 to track and analyze the progress of synergetic control in China by developing and monitoring key indicators.The Synergetic Roadmap 2022 report is the first annual update,featuring 20 indicators across five aspects:synergetic governance system and practices,progress in structural transition,air pollution and associated weather-climate interactions,sources,sinks,and mitigation pathway of atmospheric composition,and health impacts and benefits of coordinated control.Compared to the comprehensive review presented in the 2021 report,the Synergetic Roadmap 2022 report places particular emphasis on progress in 2021 with highlights on actions in key sectors and the relevant milestones.These milestones include the proportion of non-fossil power generation capacity surpassing coal-fired capacity for the first time,a decline in the production of crude steel and cement after years of growth,and the surging penetration of electric vehicles.Additionally,in 2022,China issued the first national policy that synergizes abatements of pollution and carbon emissions,marking a new era for China's pollution-carbon co-control.These changes highlight China's efforts to reshape its energy,economic,and transportation structures to meet the demand for synergetic control and sustainable development.Consequently,the country has witnessed a slowdown in carbon emission growth,improved air quality,and increased health benefits in recent years.
基金Supported by the National Key Project of Ministry of Science and Technology of China(2016YFC0203302)National Natural Science Foundation of China(91544103)
文摘We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO4^2–, NO3^–, and NH4^+ concentrations were 8.3,12.5, and 14.1 μg m^–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m^(–3), respectively, at the rural site.The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity(with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events.The ISORROPIA II model was used to predict the aerosol pH, which had a mean(range) of 5.0(4.9–5.2) and 5.3(4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO4^2– and NO3^– in haze.We also analyzed the sensitivity of the aerosol p H to changes in the concentrations of SO4^2–, NO3^–, and NH4^+ under haze conditions. The aerosol p H was more sensitive to the SO4^2– and NH4^+ concentrations with opposing trends, than to the NO3^– concentrations. The sensitivity of the p H was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.