The motion and deformation of soft particles are commonly encountered and important in many appli-cations.A discrete element-embedded finite element model(DEFEM)is proposed to solve soft particle motion and deformatio...The motion and deformation of soft particles are commonly encountered and important in many appli-cations.A discrete element-embedded finite element model(DEFEM)is proposed to solve soft particle motion and deformation,which combines discrete element and finite element methods.The collisional surface of soft particles is covered by several dynamical embedded discrete elements(EDEs)to model the collisional external forces of the particles.The particle deformation,motion,and rotation are inde-pendent of each other in the DEFEM.The deformation and internal forces are simulated using the finite element model,whereas the particle rotation and motion calculations are based on the discrete element model.By inheriting the advantages of existing coupling methods,the contact force and contact search between soft particles are improved with the aid of the EDE.Soft particle packing is simulated using the DEFEM for two cases:particle accumulation along a rectangular straight wall and a wall with an inclined angle.The large particle deformation in the lower layers can be simulated using current meth-ods,where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region.This method can also be used to simulate the deformation,motion,and heat transfer of non-spherical soft particles.展开更多
基金the support of this research by the National Science and Technology Major Project(grant No.2011ZX06901-003)the National Natural Science Foundation of China(grant No.51576211)+1 种基金the National High Technology Research and Development Program of China(863)(grant No.2014AA052701)the funds of Nuclear Power Technology Innovation Centre(grant Nos.HDLCXZX-2020-HD-022 and HDLCXZX-2021-ZH-024).
文摘The motion and deformation of soft particles are commonly encountered and important in many appli-cations.A discrete element-embedded finite element model(DEFEM)is proposed to solve soft particle motion and deformation,which combines discrete element and finite element methods.The collisional surface of soft particles is covered by several dynamical embedded discrete elements(EDEs)to model the collisional external forces of the particles.The particle deformation,motion,and rotation are inde-pendent of each other in the DEFEM.The deformation and internal forces are simulated using the finite element model,whereas the particle rotation and motion calculations are based on the discrete element model.By inheriting the advantages of existing coupling methods,the contact force and contact search between soft particles are improved with the aid of the EDE.Soft particle packing is simulated using the DEFEM for two cases:particle accumulation along a rectangular straight wall and a wall with an inclined angle.The large particle deformation in the lower layers can be simulated using current meth-ods,where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region.This method can also be used to simulate the deformation,motion,and heat transfer of non-spherical soft particles.