期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The gene encoding flavonol synthase contributes to lesion mimic in wheat
1
作者 Tingting Dong Hongchun Xiong +8 位作者 Huijun Guo Yongdun Xie Linshu Zhao Jiayu Gu Huiyuan Li Shirong Zhao Yuping Ding xiyun song Luxiang Liu 《The Crop Journal》 SCIE CSCD 2024年第3期814-825,共12页
Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a... Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat. 展开更多
关键词 Lesion mimic mutant WHEAT Gene mapping Flavonol synthase gene Flavonoid
下载PDF
Effects of Acetosyringone on Genetic Transformation of Waxy Maize Using Different Receptor Systems
2
作者 Xinmei GUO Xinming CHE +1 位作者 Yuhe PEI xiyun song 《Agricultural Biotechnology》 CAS 2013年第5期1-3,8,共4页
Acetosyringone (AS) has great influences on Agrobacterium-mediated genetic transformation. In order to improve the transformation frequency of waxy maize, in this study, shoot tips and immature embryo-derived callus... Acetosyringone (AS) has great influences on Agrobacterium-mediated genetic transformation. In order to improve the transformation frequency of waxy maize, in this study, shoot tips and immature embryo-derived callus of Lainongnuo 38 were collected as receptor materials, to compare the effects of pH in suspension medium, addition modes and concentrations of acetosyringone on genetic transformation of waxy maize. Results showed that adding 2 μl of 150 μmol/L AS in the wound with suspension medimn at pH 5.2 can significantly improve the transformation frequency of shoot tips of waxy maize; in genetic transformation of maize callus, adding 5 mg/L AS in infection solution can significantly improve the percentage of resistant callus. 展开更多
关键词 Receptor system ACETOSYRINGONE Addition mode Transformation frequency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部