期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Particle Filter Data Fusion Enhancements for MEMS-IMU/GPS 被引量:2
1
作者 Yafei Ren xizhen ke 《Intelligent Information Management》 2010年第7期417-421,共5页
This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the larg... This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-linear non-Gaussian dynamic models of the inertial sensors, the methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. Then Particle Filtering (PF) can be used to data fusion of the inertial information and real-time updates from the GPS location and speed of information accurately. The experiments show that PF as opposed to EKF is more effective in raising MEMS-IMU/GPS navigation system’s data integration accuracy. 展开更多
关键词 Micro-Electro-Mechanical-System Particle Filter Data Fusion Extended KALMAN FILTERING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部