期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The solute carrier transporters and the brain:Physiological and pharmacological implications 被引量:6
1
作者 Chengliang Hu Lei Tao +1 位作者 xizhi cao Ligong Chen 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2020年第2期131-144,共14页
Solute carriers(SLCs)are the largest family of transmembrane transporters that determine the exchange of various substances,including nutrients,ions,metabolites,and drugs across biological membranes.To date,the presen... Solute carriers(SLCs)are the largest family of transmembrane transporters that determine the exchange of various substances,including nutrients,ions,metabolites,and drugs across biological membranes.To date,the presence of about 287 SLC genes have been identified in the brain,among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders.Although increasing interest in SLCs have focused on drug development,SLCs are currently still under-explored as drug targets,especially in the brain.We summarize the main substrates and functions of SLCs that are expressed in the brain,with an emphasis on selected SLCs that are important physiologically,pathologically,and pharmacologically in the blood-brain barrier,astrocytes,and neurons.Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders,among which epilepsy,neurodegenerative diseases,and autism are representative.Given the review of SLCs involved in the onset and procession of brain disorders,we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain. 展开更多
关键词 SOLUTE carrier TRANSPORTER BRAIN DISORDER Blood-brain barrier Drug
下载PDF
The zinc transporter Slc39a5 controls glucose sensing and insulin secretion in pancreatic β-cells via Sirt1- and Pgc-1α-mediated regulation of Glut2 被引量:7
2
作者 Xinhui Wang Hong Gao +11 位作者 Wenhui Wu Enjun Xie Yingying Yu Xuyan He Jin Li Wanru Zheng Xudong Wang xizhi cao Zhuoxian Meng Ligong Chen Junxia Min Fudi Wang 《Protein & Cell》 SCIE CAS CSCD 2019年第6期436-449,共14页
Zinc levels are high in pancreatic β-cells, and zinc is involved in the synthesis, processing and secretion of insulin in these cells. However, precisely how cellular zinc homeostasis is regulated in pancreatic β-ce... Zinc levels are high in pancreatic β-cells, and zinc is involved in the synthesis, processing and secretion of insulin in these cells. However, precisely how cellular zinc homeostasis is regulated in pancreatic β-cells is poorly understood. By screening the expression of 14 Slc39a metal importer family member genes, we found that the zinc transporter Slc39a5 is significantly downregulated in pancreatic β-cells in diabetic db/db mice, obese ob/ob mice and high-fat diet-fed mice. Moreover,β-cell-specific Slc39a5 knockout mice have impaired insulin secretion. In addition, Slc39a5-deficient pancreatic islets have reduced glucose tolerance accompanied by reduced expression of Pgc-1α and its downstream target gene Glut2. The down-regulation of Glut2 in Slc39a5-deficient islets was rescued using agonists of Sirt1, Pgc-1α and Ppar-γ. At the mechanistic level, we found that Slc39a5-mediated zinc influx induces Glut2 expression via Sirt1-mediated Pgc-1α activation. These findings suggest that Slc39a5 may serve as a possible therapeutic target for diabetes-related conditions. 展开更多
关键词 ZINC ZINC TRANSPORTER PANCREATIC ISLETS β-cells insulin secretion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部