Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq...Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.展开更多
In the field of model-based system assessment,mathematical models are used to interpret the system behaviors.However,the industrial systems in this intelligent era will be more manageable.Various management operations...In the field of model-based system assessment,mathematical models are used to interpret the system behaviors.However,the industrial systems in this intelligent era will be more manageable.Various management operations will be dynamically set,and the system will be no longer static as it is initially designed.Thus,the static model generated by the traditional model-based safety assessment(MBSA)approach cannot be used to accurately assess the dependability.There mainly exists three problems.Complex:huge and complex behaviors make the modeling to be trivial manual;Dynamic:though there are thousands of states and transitions,the previous model must be resubmitted to assess whenever new management arrives;Unreusable:as for different systems,the model must be resubmitted by reconsidering both the management and the system itself at the same time though the management is the same.Motivated by solving the above problems,this research studies a formal management specifying approach with the advantages of agility modeling,dynamic modeling,and specification design that can be re-suable.Finally,three typical managements are specified in a series-parallel system as a demonstration to show the potential.展开更多
Earthquakes heavily deform the crust in the vicinity of the fault, which leads to mass redistribution in the earth interior. Then it will produce the change of the Earth's rotation ( polar motion and length of day)...Earthquakes heavily deform the crust in the vicinity of the fault, which leads to mass redistribution in the earth interior. Then it will produce the change of the Earth's rotation ( polar motion and length of day) due to the change of Earth inertial moment. This paper adopts the elastic dislocation to compute the co-seismic polar motion and variation in length of day (LOD) caused by the 2011 Sumatra earthquake. The Earth's rota- tional axis shifted about 1 mas and this earthquake decreased the length of day of 1 p,s, indicating the tendency of earthquakes make the Earth rounder and to pull the mass toward the centre of the Earth. The result of varia- tion in length of day is one order of magnitude smaller than the observed results that are available. We also compared the results of three fault models and find the co-seismic change is depended on the fault model.展开更多
基金supported by the National Natural Science Foundation of China(U21B2074,52105070).
文摘Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.
基金the National Natural Science Foundation of China(52105070,U21B2074)Department of Science and Technology of Liaoning Province China(2033JH1/10400007).
文摘In the field of model-based system assessment,mathematical models are used to interpret the system behaviors.However,the industrial systems in this intelligent era will be more manageable.Various management operations will be dynamically set,and the system will be no longer static as it is initially designed.Thus,the static model generated by the traditional model-based safety assessment(MBSA)approach cannot be used to accurately assess the dependability.There mainly exists three problems.Complex:huge and complex behaviors make the modeling to be trivial manual;Dynamic:though there are thousands of states and transitions,the previous model must be resubmitted to assess whenever new management arrives;Unreusable:as for different systems,the model must be resubmitted by reconsidering both the management and the system itself at the same time though the management is the same.Motivated by solving the above problems,this research studies a formal management specifying approach with the advantages of agility modeling,dynamic modeling,and specification design that can be re-suable.Finally,three typical managements are specified in a series-parallel system as a demonstration to show the potential.
基金supported by the National Natural Science Foundation of China(41174063)
文摘Earthquakes heavily deform the crust in the vicinity of the fault, which leads to mass redistribution in the earth interior. Then it will produce the change of the Earth's rotation ( polar motion and length of day) due to the change of Earth inertial moment. This paper adopts the elastic dislocation to compute the co-seismic polar motion and variation in length of day (LOD) caused by the 2011 Sumatra earthquake. The Earth's rota- tional axis shifted about 1 mas and this earthquake decreased the length of day of 1 p,s, indicating the tendency of earthquakes make the Earth rounder and to pull the mass toward the centre of the Earth. The result of varia- tion in length of day is one order of magnitude smaller than the observed results that are available. We also compared the results of three fault models and find the co-seismic change is depended on the fault model.