We have studied the electronic structure of [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) using synchrotron radiation photoelectron spectroscopy (PES) measurements and first-principles calculations. The PES sp...We have studied the electronic structure of [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) using synchrotron radiation photoelectron spectroscopy (PES) measurements and first-principles calculations. The PES spectrum of the entire occupied valence band is reported, which exhibits abundant spectral features from the Fermi level to - 24 eV binding energy. All the spectral features are broadened as compared with the cases of C60. The reasons for the broadening are analysed by comparing the experimental data with the calculated energy levels and density of states. Special attention is paid to the analysis of the C60 highest occupied molecular orbitM (HOMO)-1 derived states, which can play a crucial role in the bonding at the interfaces of PCBM/polymer blenders or PCBM/electrodes. Besides the well-known energy level splitting of the C60 backbone caused by the lowered symmetry, C 2p states from the side chain mix or hybridize with the molecular orbitals of parent C60. The contribution of the O 2p states can substantially modify the PES spectrum.展开更多
The native point defect states in ZnO have been calculated by using a full-potential linear muffin-tin orbital method. The results show that Zn vacancy and O interstitial produce the shallow acceptor levels above the ...The native point defect states in ZnO have been calculated by using a full-potential linear muffin-tin orbital method. The results show that Zn vacancy and O interstitial produce the shallow acceptor levels above the valence band. The O vacancy produces a deep donor level, while Zn interstitial produces a shallow donor level, both below the conduction band. The Zn interstitial is the main factor which induces the native n-type conductivity in ZnO.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11079028)the National SynchrotronRadiation Laboratory of China
文摘We have studied the electronic structure of [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) using synchrotron radiation photoelectron spectroscopy (PES) measurements and first-principles calculations. The PES spectrum of the entire occupied valence band is reported, which exhibits abundant spectral features from the Fermi level to - 24 eV binding energy. All the spectral features are broadened as compared with the cases of C60. The reasons for the broadening are analysed by comparing the experimental data with the calculated energy levels and density of states. Special attention is paid to the analysis of the C60 highest occupied molecular orbitM (HOMO)-1 derived states, which can play a crucial role in the bonding at the interfaces of PCBM/polymer blenders or PCBM/electrodes. Besides the well-known energy level splitting of the C60 backbone caused by the lowered symmetry, C 2p states from the side chain mix or hybridize with the molecular orbitals of parent C60. The contribution of the O 2p states can substantially modify the PES spectrum.
基金Supported by the National Natural Science Foundation of China under Grant Nos.59872037 and 19874057.
文摘The native point defect states in ZnO have been calculated by using a full-potential linear muffin-tin orbital method. The results show that Zn vacancy and O interstitial produce the shallow acceptor levels above the valence band. The O vacancy produces a deep donor level, while Zn interstitial produces a shallow donor level, both below the conduction band. The Zn interstitial is the main factor which induces the native n-type conductivity in ZnO.