通过微波等离子体化学气相淀积技术生长单晶金刚石并切割得到(110)和(111)晶面金刚石片,以同批器件工艺制备两种晶面上栅长为6μm的氢终端单晶金刚石场效应管,从材料和器件特性两方面对两种晶面金刚石进行对比分析.(110)面和(111)面金...通过微波等离子体化学气相淀积技术生长单晶金刚石并切割得到(110)和(111)晶面金刚石片,以同批器件工艺制备两种晶面上栅长为6μm的氢终端单晶金刚石场效应管,从材料和器件特性两方面对两种晶面金刚石进行对比分析.(110)面和(111)面金刚石的表面形貌在氢终端处理后显著不同,光学性质则彼此相似.VGS=–4 V时,(111)金刚石器件获得的最大饱和电流为80.41 m A/mm,约为(110)金刚石器件的1.4倍;其导通电阻为48.51 W·mm,只有(110)金刚石器件导通电阻的67%.通过对器件电容-电压特性曲线的分析得到,(111)金刚石器件沟道中最大载流子密度与(110)金刚石器件差异不大.分析认为,(111)金刚石器件获得更高饱和电流和更低导通电阻,应归因于较低的方阻.展开更多
Nonpolar (1150) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire. The samples are irradiated with neutrons under a dose of 1× 1015 cm-2. The surface...Nonpolar (1150) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire. The samples are irradiated with neutrons under a dose of 1× 1015 cm-2. The surface morphology, the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD) and photoluminescence (PL). The AFM result shows deteriorated sample surface after the irradiation. Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction. Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample, indicating that more point defects appear in the irradiated sample. The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results. The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron.展开更多
Nonpolar (1120) and semipolar (1122) GaN are grown on r-plane and m-plane sapphire by MOCVD to investigate the characteristics of basal plane stacking faults (BSFs).Transmission electron microscopy reveals that the de...Nonpolar (1120) and semipolar (1122) GaN are grown on r-plane and m-plane sapphire by MOCVD to investigate the characteristics of basal plane stacking faults (BSFs).Transmission electron microscopy reveals that the density of BSFs for the semipolar (1122) and nonpolar a-plane GaN template is 3×10^(5) cm^(-1) and 8×10^(5) cm^(-1),respectively.The semipolar (1122) GaN shows an arrowhead-like structure,and the nonpolar a-plane GaN has a much smoother morphology with a streak along the c-axis.Both nonpolar (11(2)0) and semipolar (1122) GaN have very strong BSF luminescence due to the optically active character of the BSFs.展开更多
First-order Raman scatterings of hexagonal GaN layers deposited by the hydride vapour phase epitaxy and by metal-organic chemical vapour deposition on SiC and sapphire substrates are studied in a temperature range bet...First-order Raman scatterings of hexagonal GaN layers deposited by the hydride vapour phase epitaxy and by metal-organic chemical vapour deposition on SiC and sapphire substrates are studied in a temperature range between 303 K and 503 K. The temperature dependences of two GaN Raman modes (Al (LO) and E2 (high)) are obtained. We focus our attention on the temperature dependence of E2 (high) mode and find that for different types of GaN epilayers their temperature dependences are somewhat different. We compare their differences and give them an explanation. The simplified formulas we obtained are in good accordance with experiment data. The results can be used to determine the temperature of a GaN sample.展开更多
文摘通过微波等离子体化学气相淀积技术生长单晶金刚石并切割得到(110)和(111)晶面金刚石片,以同批器件工艺制备两种晶面上栅长为6μm的氢终端单晶金刚石场效应管,从材料和器件特性两方面对两种晶面金刚石进行对比分析.(110)面和(111)面金刚石的表面形貌在氢终端处理后显著不同,光学性质则彼此相似.VGS=–4 V时,(111)金刚石器件获得的最大饱和电流为80.41 m A/mm,约为(110)金刚石器件的1.4倍;其导通电阻为48.51 W·mm,只有(110)金刚石器件导通电阻的67%.通过对器件电容-电压特性曲线的分析得到,(111)金刚石器件沟道中最大载流子密度与(110)金刚石器件差异不大.分析认为,(111)金刚石器件获得更高饱和电流和更低导通电阻,应归因于较低的方阻.
基金supported by the National Key Science and Technology Special Project,China (Grant No.2008ZX01002-002)the Major Program and State Key Program of the National Natural Science Foundation of China (Grant Nos.60890191 and 60736033)the Fundamental Research Funds for the Central Universities,China (Grant No.JY10000904009)
文摘Nonpolar (1150) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire. The samples are irradiated with neutrons under a dose of 1× 1015 cm-2. The surface morphology, the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD) and photoluminescence (PL). The AFM result shows deteriorated sample surface after the irradiation. Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction. Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample, indicating that more point defects appear in the irradiated sample. The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results. The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No K50511250002the National Key Science&Technology Special Project under Grant No 2008ZX01002-002the Major Program and State Key Program of the National Natural Science Foundation of China under Grant Nos 60890191 and 60736033.
文摘Nonpolar (1120) and semipolar (1122) GaN are grown on r-plane and m-plane sapphire by MOCVD to investigate the characteristics of basal plane stacking faults (BSFs).Transmission electron microscopy reveals that the density of BSFs for the semipolar (1122) and nonpolar a-plane GaN template is 3×10^(5) cm^(-1) and 8×10^(5) cm^(-1),respectively.The semipolar (1122) GaN shows an arrowhead-like structure,and the nonpolar a-plane GaN has a much smoother morphology with a streak along the c-axis.Both nonpolar (11(2)0) and semipolar (1122) GaN have very strong BSF luminescence due to the optically active character of the BSFs.
基金supported by the National Key Science & Technology Special Project (Grant No.2008ZX01002-002)the Fundamental Research Funds for the Central Universities (Grant No.JY10000904009)the Major Program and State Key Program of National Natural Science Foundation of China (Grant Nos.60890191 and 60736033)
文摘First-order Raman scatterings of hexagonal GaN layers deposited by the hydride vapour phase epitaxy and by metal-organic chemical vapour deposition on SiC and sapphire substrates are studied in a temperature range between 303 K and 503 K. The temperature dependences of two GaN Raman modes (Al (LO) and E2 (high)) are obtained. We focus our attention on the temperature dependence of E2 (high) mode and find that for different types of GaN epilayers their temperature dependences are somewhat different. We compare their differences and give them an explanation. The simplified formulas we obtained are in good accordance with experiment data. The results can be used to determine the temperature of a GaN sample.