Phlogopite-amphibole pyroxenite xenoliths contained in an Early Palaeozoic alkali subvolcanic lamprophyre complex in Langao County, Shaanxi Province, are metasomatized mantle xenoliths, composed mainly of clinopyroxen...Phlogopite-amphibole pyroxenite xenoliths contained in an Early Palaeozoic alkali subvolcanic lamprophyre complex in Langao County, Shaanxi Province, are metasomatized mantle xenoliths, composed mainly of clinopyroxene, amphibole, phlogopite, apatite, pervoskite, ilmenite and sphene with well-developed subsolidus metamorphism-deformation textures, such as “triple points” and “cataclastic boundaries”. Minerological studies indicate that clinopyroxene is rich in SiO2 and MgO and poor in TiO2 and Al2O3, which is notably different from magmatogenic deep-seated megacrysts and phenocrysts formed in the range of mantle pressure. Amphibole and phlogopite have the compositional feature of mantle-derived amphibole and phlogopite. Sm-Nd isotope studies suggest that the metasomatized mantle beneath Langao County is the product of metasomatism of primitive mantle by melt (fluid) derived from the mantle plume, and the mantle metasomatism occurred 650 Ma ago. The process of mantle metasomatism changed from mantle metasomatism induced by CO2-, H2O- and CH4-rich fluid in the early stage to that induced by melt and P-, Ti-, Ca- and Fe-rich fluid in the late stage.展开更多
This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali bas...This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali basalts (basanite, olivine-nephelinite and alkali-olivine basalt) from eastern China. The study indicates that the volatile components, which are dissolved in high-pressure solid mineral phases of mantle peridotite at depths, may be exsolved under decompressive conditions of mantle plume upwelling to produce the initial free fluid phases in the upper mantle. The free fluid phases migrating in the upper mantle may result in lowering of the mantle solidus (and liquidus), thereby initiating partial melting of the upper mantle, and in the meantime, producing metasomatic effects on the latter.展开更多
The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to colli...The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to collision.However,the late Paleozoic tectonic evolutionary history,especially for the time of the ocean-continent transition,is still debated although the origin and tectonic settings for the Paleozoic volcanic,felsic igneous magmatism in TO and reginal geology have been done in the last decades.In contrast,the researches on the mafic dykes in TO was not systematically carried out till now.Reginal-scale mafic dykes are commonly regarded as the products created in a extensional setting,and used to identify the major tectonic events such as rifting and continental break-up and further trace the mantle natures and geodynamic mechanism(Halls,1982;Bleeker and Ernst,2006;Li et al.,2008;Ernst et al.,2010;Srivastava,2011;Hou,2012;Peng,2015;Peng et al.,2019).There are widespread late Paleozoic mafic dykes beside the huge of intermediate-acid igneous rocks in the TO,being an idea object to reveal the extensional events,tectonic evolution and the mantle nature and geodynamic processes.We present the ICPMS in situ zircon U–Pb dating,Lu-Hf and whole-rock Sr-Nd isotopes as well as the geochemistry data for these mafic dykes to better constraint their petrogenesis and mantle nature.New zircon U-Pb dating for 12 samples from the representative basic dykes and basalts yield three distinct stages of^332 Ma,316–302 Ma and 288–282 Ma,respectively.In which,the first stage of mafic dykes is mainly occurred in both East Tianshan Orogen(ETO)and West Tianshan Orogen(WTO),and composed of dolerite with minor basalts.The second stage of mafic dyke also can be found in both ETO and WTO.However,in contrast to the first stage of mafic dykes,they have relatively variable rock types from the dolerite/or gabbros to gabbroic diorite.The third stage of mafic dykes are slightly intermediate in composition,and chiefly consist of andesitic-basaltic dolerite with some diorites.They are widely developed not only in both ETO and WTO,but also in the Beishan area to the east of the ETO,indicating a large-scale mafic magmatism in Tianshan and adjacent areas.展开更多
文摘Phlogopite-amphibole pyroxenite xenoliths contained in an Early Palaeozoic alkali subvolcanic lamprophyre complex in Langao County, Shaanxi Province, are metasomatized mantle xenoliths, composed mainly of clinopyroxene, amphibole, phlogopite, apatite, pervoskite, ilmenite and sphene with well-developed subsolidus metamorphism-deformation textures, such as “triple points” and “cataclastic boundaries”. Minerological studies indicate that clinopyroxene is rich in SiO2 and MgO and poor in TiO2 and Al2O3, which is notably different from magmatogenic deep-seated megacrysts and phenocrysts formed in the range of mantle pressure. Amphibole and phlogopite have the compositional feature of mantle-derived amphibole and phlogopite. Sm-Nd isotope studies suggest that the metasomatized mantle beneath Langao County is the product of metasomatism of primitive mantle by melt (fluid) derived from the mantle plume, and the mantle metasomatism occurred 650 Ma ago. The process of mantle metasomatism changed from mantle metasomatism induced by CO2-, H2O- and CH4-rich fluid in the early stage to that induced by melt and P-, Ti-, Ca- and Fe-rich fluid in the late stage.
基金supported by the National NaturalScience Foundation of China(Grant 4913390).
文摘This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali basalts (basanite, olivine-nephelinite and alkali-olivine basalt) from eastern China. The study indicates that the volatile components, which are dissolved in high-pressure solid mineral phases of mantle peridotite at depths, may be exsolved under decompressive conditions of mantle plume upwelling to produce the initial free fluid phases in the upper mantle. The free fluid phases migrating in the upper mantle may result in lowering of the mantle solidus (and liquidus), thereby initiating partial melting of the upper mantle, and in the meantime, producing metasomatic effects on the latter.
基金co-funded by the Land and Resources Survey Project of China(Grant no.12120113042200)National Natural Science Foundation of China(41421002)the MOST Special Fund from State Key Laboratory of Continental Dynamics,Northwest University(201210133)
文摘The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to collision.However,the late Paleozoic tectonic evolutionary history,especially for the time of the ocean-continent transition,is still debated although the origin and tectonic settings for the Paleozoic volcanic,felsic igneous magmatism in TO and reginal geology have been done in the last decades.In contrast,the researches on the mafic dykes in TO was not systematically carried out till now.Reginal-scale mafic dykes are commonly regarded as the products created in a extensional setting,and used to identify the major tectonic events such as rifting and continental break-up and further trace the mantle natures and geodynamic mechanism(Halls,1982;Bleeker and Ernst,2006;Li et al.,2008;Ernst et al.,2010;Srivastava,2011;Hou,2012;Peng,2015;Peng et al.,2019).There are widespread late Paleozoic mafic dykes beside the huge of intermediate-acid igneous rocks in the TO,being an idea object to reveal the extensional events,tectonic evolution and the mantle nature and geodynamic processes.We present the ICPMS in situ zircon U–Pb dating,Lu-Hf and whole-rock Sr-Nd isotopes as well as the geochemistry data for these mafic dykes to better constraint their petrogenesis and mantle nature.New zircon U-Pb dating for 12 samples from the representative basic dykes and basalts yield three distinct stages of^332 Ma,316–302 Ma and 288–282 Ma,respectively.In which,the first stage of mafic dykes is mainly occurred in both East Tianshan Orogen(ETO)and West Tianshan Orogen(WTO),and composed of dolerite with minor basalts.The second stage of mafic dyke also can be found in both ETO and WTO.However,in contrast to the first stage of mafic dykes,they have relatively variable rock types from the dolerite/or gabbros to gabbroic diorite.The third stage of mafic dykes are slightly intermediate in composition,and chiefly consist of andesitic-basaltic dolerite with some diorites.They are widely developed not only in both ETO and WTO,but also in the Beishan area to the east of the ETO,indicating a large-scale mafic magmatism in Tianshan and adjacent areas.