After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,M...After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.展开更多
The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more ...The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.展开更多
High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH2(PCP-MCN),a kind of hybrid metal-organic framework,which exh...High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH2(PCP-MCN),a kind of hybrid metal-organic framework,which exhibits a superior proton conductivity.PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes.Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated.Significant enhancement in proton conduction for PCP-MCN around 55℃ is interestingly found due to the thermal motion of the PCP molecular chains.Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains,i.e.,the formation of substantial acid–base pairs(-SO_(3)^(-)…^(+)H–NH-),which further improves compatibility between additive and Nafion matrix.At the same humidity and temperature condition,the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion.Proton conductivity(σ)over wide ranges of humidities(30-100%RH at 25℃)and temperatures(30-98℃ at 100%RH)for prepared membranes is measured.The s in PCPMCN/Nafion composite membranes is remarkably enhanced,i.e.0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98℃ and 100%RH,because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation–deprotonation processes.The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN.In particular,when 3 wt.%PCP-MCN was added to Nafion,the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480,1.098 W/cm^(2) under 40%RH,100%RH at 60℃,respectively,guaranteeing it to be a promising proton exchange membrane.展开更多
The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitr...The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.展开更多
BACKGROUND Esophageal chromoendoscopy with iodine solution is important for detecting early esophageal cancer.The effect of routine treatment for lesions lightly stained with Lugol’s iodine solution is limited,and th...BACKGROUND Esophageal chromoendoscopy with iodine solution is important for detecting early esophageal cancer.The effect of routine treatment for lesions lightly stained with Lugol’s iodine solution is limited,and the addition of natural substances to a regular diet is becoming increasingly common.Vinegar has antitumor effects as reported in previous studies.AIM To evaluate whether vinegar supplementation could improve the prognosis of patients with lightly stained esophageal lesions.METHODSThis prospective single-centre trial included consecutive patients with lightly stained lesions between June 2020 and April 2022.Patients in the experimental group received increased amounts of vinegar for 6 months.The primary outcome of the study was the clinical therapeutic effect.Complications related to vinegar ingestion and adverse events were also recorded in detail.RESULTS A total of 166 patients were included in the final analysis.There was no significant difference in the baseline data between the two groups.Intention-to-treat(ITT)analysis demonstrated that the rates at which endoscopic characteristics improved were 33.72%in the experimental group and 20.00%in the conventional group(P=0.007);and the rates at which biopsy pathology improved were 19.77%and 8.75%,respectively(P=0.011).Additional vinegar consumption had a statistically protective effect on the rate at which endoscopic characteristics improved[hazard ratio(HR)_(ITT)=2.183,95%CI:1.183-4.028;HR_(per-protocol(PP))=2.307,95%CI:1.202-4.426]and biopsy pathology improved(HR_(ITT)=2.931,95%CI:1.212-7.089;HR_(PP)=3.320,95%CI:1.295-8.507).No statistically significant effect of increased vinegar consumption on preventing high-grade intraepithelial neoplasia or early cancer was observed(HR_(ITT)=0.382,95%CI:0.079-1.846;HRPP=0.382,95%CI:0.079-1.846).The subgroup analyses indicated that the overall therapeutic improvement of endoscopic characteristics and biopsy pathology seemed more obvious in older(age>60)male patients with small lesions(lesion size≤0.5 cm).Three patients in the experimental group reported acid regurgitation and heartburn.No adverse event during gastroscopy were recorded during follow-up.CONCLUSION A moderately increased ingestion of vinegar could not directly reduce the risk of esophageal cancer in the mucosa dysplasia population,but it improved the endoscopic characteristics and ameliorated the biopsy pathology to a certain extent.Further research is needed to verify the effect of nutritional intervention on precancerous esophageal lesions.展开更多
Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropo...Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropogenic carbon cycle.Among various electrocatalysts for electrochemical CO_(2)reduction,multifunctional metal–organic frameworks(MOFs)have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures.Up to now,great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR),and their corresponding reaction mechanisms have been thoroughly studied.In this review,we summarize the recent progress of applying MOFs and their derivatives in CO_(2)RR,with a focus on the design strategies for electrocatalysts and electrolyzers.We first discussed the reaction mechanisms for different CO_(2)RR products and introduced the commonly applied electrolyzer configurations in the current CO_(2)RR system.Then,an overview of several categories of products(CO,HCOOH,CH_(4),CH_(3)OH,and multi-carbon chemicals)generated from MOFs or their derivatives via CO_(2)RR was discussed.Finally,we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO_(2)reduction.We aim to provide new insights into this field and further guide future research for large-scale applications.展开更多
BACKGROUND Gastrointestinal stromal tumor(GIST)is a common neoplasm with high rates of recurrence and metastasis,and its therapeutic efficacy is still not ideal.There is an unmet need to find new molecular therapeutic...BACKGROUND Gastrointestinal stromal tumor(GIST)is a common neoplasm with high rates of recurrence and metastasis,and its therapeutic efficacy is still not ideal.There is an unmet need to find new molecular therapeutic targets for GIST.TATA-boxbinding protein-associated factor 15(TAF15)contributes to the progress of various tumors,while the role and molecular mechanism of TAF15 in GIST progression are still unknown.AIM To explore new molecular therapeutic targets for GIST and understand the biological role and underlying mechanisms of TAF15 in GIST progression.METHODS Proteomic analysis was performed to explore the differentially expressed proteins in GIST.Western blotting and immunohistochemical analysis were used to verify the expression level of TAF15 in GIST tissues and cell lines.Cell counting kit-8,colony formation,wound-healing and transwell assay were executed to detect the ability of TAF15 on cell proliferation,migration and invasion.A xenograft mouse model was applied to explore the role of TAF15 in the progression of GIST.Western blotting was used to detect the phosphorylation level and total level of RAF1,MEK and ERK1/2.RESULTS A total of 1669 proteins were identified as differentially expressed proteins with 762 upregulated and 907 downregulated in GIST.TAF15 was selected for the further study because of its important role in cell proliferation and migration.TAF15 was significantly over expressed in GIST tissues and cell lines.Overexpression of TAF15 was associated with larger tumor size and higher risk stage of GIST.TAF15 knockdown significantly inhibited the cell proliferation and migration of GIST in vitro and suppressed tumor growth in vivo.Moreover,the inhibition of TAF15 expression significantly decreased the phosphorylation level of RAF1,MEK and ERK1/2 in GIST cells and xenograft tissues,while the total RAF1,MEK and ERK1/2 had no significant change.CONCLUSION TAF15 is over expressed in GIST tissues and cell lines.Overexpression of TAF15 was associated with a poor prognosis of GIST patients.TAF15 promotes cell proliferation and migration in GIST via the activation of the RAF1/MEK/ERK signaling pathway.Thus,TAF15 is expected to be a novel latent molecular biomarker or therapeutic target of GIST.展开更多
Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is d...Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).展开更多
背景急性缺血性卒中(AIS)高发,及时恢复脑血流是治疗的关键,超时间窗就诊患者无更多促进脑血流恢复的治疗手段。研究远隔缺血后适应(RIPostC)治疗对AIS超时间窗就诊患者的临床疗效、并发症和预后,具有重要的临床意义。目的探究RIPostC...背景急性缺血性卒中(AIS)高发,及时恢复脑血流是治疗的关键,超时间窗就诊患者无更多促进脑血流恢复的治疗手段。研究远隔缺血后适应(RIPostC)治疗对AIS超时间窗就诊患者的临床疗效、并发症和预后,具有重要的临床意义。目的探究RIPostC治疗对AIS超时间窗患者干预的影响,为超时间窗就诊的AIS患者寻求安全、有效的脑血流恢复治疗方式。方法本研究采用随机、分组、安慰剂对照法进行试验。选取2021-09-02—2022-08-31于北京航天总医院神经内科病房住院治疗的超溶栓时间窗(发病时间>6 h)的AIS患者为研究对象。依据随机数字表法将患者分为对照组和试验组。试验期+随访期共90 d,均使用同等的一般治疗、脑血管病常规治疗,试验组在此基础上给予RIPostC治疗14 d(28次),对照组给予模拟的RIPostC治疗14 d(28次)。在干预前和干预后30 d、干预后90 d,采用改良Rankin量表(mRS)、美国国立卫生研究院卒中量表(NIHSS)评估两组患者神经功能,简易精神状态检查量表(MMSE)、蒙特利尔认知评估量表(MoCA)评估患者认知功能,工具性日常生活能力量表(IADL)评估日常生活能力,焦虑自评量表(SAS)、抑郁自评量表(SDS)评估精神状态,经颅多普勒超声(TCD)评估脑血流速度,以白介素(IL)-6反映炎症情况。结果122例患者中,最终完成试验及随访99例,其中试验组49例,对照组50例。两组患者性别、年龄、基础疾病(高血压、糖尿病、冠心病)及基线NIHSS评分比较,差异无统计学意义(P>0.05)。重复测量方差分析结果示,时间与组别对MMSE、MoCA、mRS、NIHSS、脑血流速度、IL-6存在交互作用(P<0.05),时间和组别对MMSE、MoCA、NIHSS、脑血流速度、IL-6主效应显著(P<0.05),时间对mRS、SAS、SDS、IADL主效应显著(P<0.05)。试验组干预后30、90 d MMSE、MoCA评分及脑血流速度均高于对照组,mRS、NIHSS评分均低于对照组(P<0.05);试验组干预后30、90 d SDS、IADL评分低于对照组(P<0.05);试验组干预后30 d SAS评分高于对照组,IL-6低于对照组(P<0.05)。99例患者中共有23例患者发生不良反应,其中试验组17例,对照组6例,两组皮肤瘀点、头晕、心慌、胸闷发生率比较,差异无统计学意义(P>0.05);对照组患者皮肤瘀斑发生率[4.00%(2/50)与12.24%(6/49)]、总不良反应发生率[12.00%(6/50)与34.69%(17/49)]低于试验组(P<0.05)。结论RIPostC治疗可降低AIS患者的炎症反应,对神经功能、认知功能抑郁情绪及颅内血流速度可起到积极的改善效果。展开更多
基金Theme-based research scheme of Hong Kong Research Grant Council(RGC Ref:T13-402/17-N)National Natural Science Foundation of China(No.U1804251)。
文摘After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.
基金supported by National Natural Science Foundation of China under Grant No.61972360Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2020MF148,ZR2020QF108.
文摘The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12075172,12375288,12205089,and 12105048)National Key R&D Program of China(Grant No.2019YFA0210003)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110817).
文摘High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH2(PCP-MCN),a kind of hybrid metal-organic framework,which exhibits a superior proton conductivity.PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes.Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated.Significant enhancement in proton conduction for PCP-MCN around 55℃ is interestingly found due to the thermal motion of the PCP molecular chains.Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains,i.e.,the formation of substantial acid–base pairs(-SO_(3)^(-)…^(+)H–NH-),which further improves compatibility between additive and Nafion matrix.At the same humidity and temperature condition,the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion.Proton conductivity(σ)over wide ranges of humidities(30-100%RH at 25℃)and temperatures(30-98℃ at 100%RH)for prepared membranes is measured.The s in PCPMCN/Nafion composite membranes is remarkably enhanced,i.e.0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98℃ and 100%RH,because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation–deprotonation processes.The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN.In particular,when 3 wt.%PCP-MCN was added to Nafion,the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480,1.098 W/cm^(2) under 40%RH,100%RH at 60℃,respectively,guaranteeing it to be a promising proton exchange membrane.
基金partially supported by National Natural Science Foundation of China(No.52477141)the Natural Science Foundation of the Jiangsu Province(No.BK20191162)+2 种基金Fundamental Research Funds for the Central Universities(No.B210203006)the Research Fund of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)Changzhou Science and Technology Program(No.CJ20190046).
文摘The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.
基金Supported by the 1-3-5 Project for Disciplines of Excellence-Clinical Research Incubation Project,West China Hospital,Sichuan University,No.2020HXFH016the Med-X Innovation Programme of Med-X Center for Materials,Sichuan University,No.MCM202302The study protocol was approved by the Biomedical Research Ethics Committee,West China Hospital of Sichuan University(No.HX-IRB-AF-03-V3.0).
文摘BACKGROUND Esophageal chromoendoscopy with iodine solution is important for detecting early esophageal cancer.The effect of routine treatment for lesions lightly stained with Lugol’s iodine solution is limited,and the addition of natural substances to a regular diet is becoming increasingly common.Vinegar has antitumor effects as reported in previous studies.AIM To evaluate whether vinegar supplementation could improve the prognosis of patients with lightly stained esophageal lesions.METHODSThis prospective single-centre trial included consecutive patients with lightly stained lesions between June 2020 and April 2022.Patients in the experimental group received increased amounts of vinegar for 6 months.The primary outcome of the study was the clinical therapeutic effect.Complications related to vinegar ingestion and adverse events were also recorded in detail.RESULTS A total of 166 patients were included in the final analysis.There was no significant difference in the baseline data between the two groups.Intention-to-treat(ITT)analysis demonstrated that the rates at which endoscopic characteristics improved were 33.72%in the experimental group and 20.00%in the conventional group(P=0.007);and the rates at which biopsy pathology improved were 19.77%and 8.75%,respectively(P=0.011).Additional vinegar consumption had a statistically protective effect on the rate at which endoscopic characteristics improved[hazard ratio(HR)_(ITT)=2.183,95%CI:1.183-4.028;HR_(per-protocol(PP))=2.307,95%CI:1.202-4.426]and biopsy pathology improved(HR_(ITT)=2.931,95%CI:1.212-7.089;HR_(PP)=3.320,95%CI:1.295-8.507).No statistically significant effect of increased vinegar consumption on preventing high-grade intraepithelial neoplasia or early cancer was observed(HR_(ITT)=0.382,95%CI:0.079-1.846;HRPP=0.382,95%CI:0.079-1.846).The subgroup analyses indicated that the overall therapeutic improvement of endoscopic characteristics and biopsy pathology seemed more obvious in older(age>60)male patients with small lesions(lesion size≤0.5 cm).Three patients in the experimental group reported acid regurgitation and heartburn.No adverse event during gastroscopy were recorded during follow-up.CONCLUSION A moderately increased ingestion of vinegar could not directly reduce the risk of esophageal cancer in the mucosa dysplasia population,but it improved the endoscopic characteristics and ameliorated the biopsy pathology to a certain extent.Further research is needed to verify the effect of nutritional intervention on precancerous esophageal lesions.
基金the National Key Research and Development Program of China(2022YFB4102000)NSFC(22102018 and 52171201)+5 种基金the Natural Science Foundation of Sichuan Province(2022NSFSC0194)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C03017)the Hefei National Research Center for Physical Sciences at the Microscale(KF2021005)the University of Electronic Science and Technology of China for startup funding(A1098531023601264)Q.J.acknowledges the China Postdoctoral Science Foundation funded project(2022M710601)the University of Electronic Science and Technology of China for startup funding(Y030212059003039).
文摘Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropogenic carbon cycle.Among various electrocatalysts for electrochemical CO_(2)reduction,multifunctional metal–organic frameworks(MOFs)have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures.Up to now,great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR),and their corresponding reaction mechanisms have been thoroughly studied.In this review,we summarize the recent progress of applying MOFs and their derivatives in CO_(2)RR,with a focus on the design strategies for electrocatalysts and electrolyzers.We first discussed the reaction mechanisms for different CO_(2)RR products and introduced the commonly applied electrolyzer configurations in the current CO_(2)RR system.Then,an overview of several categories of products(CO,HCOOH,CH_(4),CH_(3)OH,and multi-carbon chemicals)generated from MOFs or their derivatives via CO_(2)RR was discussed.Finally,we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO_(2)reduction.We aim to provide new insights into this field and further guide future research for large-scale applications.
基金Supported by National Natural Science Foundation of China,No.81870453.
文摘BACKGROUND Gastrointestinal stromal tumor(GIST)is a common neoplasm with high rates of recurrence and metastasis,and its therapeutic efficacy is still not ideal.There is an unmet need to find new molecular therapeutic targets for GIST.TATA-boxbinding protein-associated factor 15(TAF15)contributes to the progress of various tumors,while the role and molecular mechanism of TAF15 in GIST progression are still unknown.AIM To explore new molecular therapeutic targets for GIST and understand the biological role and underlying mechanisms of TAF15 in GIST progression.METHODS Proteomic analysis was performed to explore the differentially expressed proteins in GIST.Western blotting and immunohistochemical analysis were used to verify the expression level of TAF15 in GIST tissues and cell lines.Cell counting kit-8,colony formation,wound-healing and transwell assay were executed to detect the ability of TAF15 on cell proliferation,migration and invasion.A xenograft mouse model was applied to explore the role of TAF15 in the progression of GIST.Western blotting was used to detect the phosphorylation level and total level of RAF1,MEK and ERK1/2.RESULTS A total of 1669 proteins were identified as differentially expressed proteins with 762 upregulated and 907 downregulated in GIST.TAF15 was selected for the further study because of its important role in cell proliferation and migration.TAF15 was significantly over expressed in GIST tissues and cell lines.Overexpression of TAF15 was associated with larger tumor size and higher risk stage of GIST.TAF15 knockdown significantly inhibited the cell proliferation and migration of GIST in vitro and suppressed tumor growth in vivo.Moreover,the inhibition of TAF15 expression significantly decreased the phosphorylation level of RAF1,MEK and ERK1/2 in GIST cells and xenograft tissues,while the total RAF1,MEK and ERK1/2 had no significant change.CONCLUSION TAF15 is over expressed in GIST tissues and cell lines.Overexpression of TAF15 was associated with a poor prognosis of GIST patients.TAF15 promotes cell proliferation and migration in GIST via the activation of the RAF1/MEK/ERK signaling pathway.Thus,TAF15 is expected to be a novel latent molecular biomarker or therapeutic target of GIST.
基金National Key Research and Development Program of China(No.2021YFE0114700)National Natural Science Foundation of China(Nos.52130701 and 51977096)。
文摘Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).
文摘背景急性缺血性卒中(AIS)高发,及时恢复脑血流是治疗的关键,超时间窗就诊患者无更多促进脑血流恢复的治疗手段。研究远隔缺血后适应(RIPostC)治疗对AIS超时间窗就诊患者的临床疗效、并发症和预后,具有重要的临床意义。目的探究RIPostC治疗对AIS超时间窗患者干预的影响,为超时间窗就诊的AIS患者寻求安全、有效的脑血流恢复治疗方式。方法本研究采用随机、分组、安慰剂对照法进行试验。选取2021-09-02—2022-08-31于北京航天总医院神经内科病房住院治疗的超溶栓时间窗(发病时间>6 h)的AIS患者为研究对象。依据随机数字表法将患者分为对照组和试验组。试验期+随访期共90 d,均使用同等的一般治疗、脑血管病常规治疗,试验组在此基础上给予RIPostC治疗14 d(28次),对照组给予模拟的RIPostC治疗14 d(28次)。在干预前和干预后30 d、干预后90 d,采用改良Rankin量表(mRS)、美国国立卫生研究院卒中量表(NIHSS)评估两组患者神经功能,简易精神状态检查量表(MMSE)、蒙特利尔认知评估量表(MoCA)评估患者认知功能,工具性日常生活能力量表(IADL)评估日常生活能力,焦虑自评量表(SAS)、抑郁自评量表(SDS)评估精神状态,经颅多普勒超声(TCD)评估脑血流速度,以白介素(IL)-6反映炎症情况。结果122例患者中,最终完成试验及随访99例,其中试验组49例,对照组50例。两组患者性别、年龄、基础疾病(高血压、糖尿病、冠心病)及基线NIHSS评分比较,差异无统计学意义(P>0.05)。重复测量方差分析结果示,时间与组别对MMSE、MoCA、mRS、NIHSS、脑血流速度、IL-6存在交互作用(P<0.05),时间和组别对MMSE、MoCA、NIHSS、脑血流速度、IL-6主效应显著(P<0.05),时间对mRS、SAS、SDS、IADL主效应显著(P<0.05)。试验组干预后30、90 d MMSE、MoCA评分及脑血流速度均高于对照组,mRS、NIHSS评分均低于对照组(P<0.05);试验组干预后30、90 d SDS、IADL评分低于对照组(P<0.05);试验组干预后30 d SAS评分高于对照组,IL-6低于对照组(P<0.05)。99例患者中共有23例患者发生不良反应,其中试验组17例,对照组6例,两组皮肤瘀点、头晕、心慌、胸闷发生率比较,差异无统计学意义(P>0.05);对照组患者皮肤瘀斑发生率[4.00%(2/50)与12.24%(6/49)]、总不良反应发生率[12.00%(6/50)与34.69%(17/49)]低于试验组(P<0.05)。结论RIPostC治疗可降低AIS患者的炎症反应,对神经功能、认知功能抑郁情绪及颅内血流速度可起到积极的改善效果。