We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found tha...We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found that the minimum energy position of the harmonic spectrum and the non-integer order optical radiation are greatly discrepant for different atomic potentials.By analyzing the quantum trajectory of the harmonic emission,discrepancies among the harmonic spectra from different potentials can be attributed to the action of the potential on the ionized electrons.In addition,based on the influence of the driving light intensity on the overall intensity and ellipticity of higher order harmonics,the physical conditions for generating a high-intensity circularly polarized harmonic can be obtained.展开更多
基金the National Key Research and Development Program of China(Grant Nos.2019YFA0307700 and 2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.11627807,11774175,11534004,11774129,11975012,and 11604119)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.30916011207)the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20170101153JC).
文摘We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found that the minimum energy position of the harmonic spectrum and the non-integer order optical radiation are greatly discrepant for different atomic potentials.By analyzing the quantum trajectory of the harmonic emission,discrepancies among the harmonic spectra from different potentials can be attributed to the action of the potential on the ionized electrons.In addition,based on the influence of the driving light intensity on the overall intensity and ellipticity of higher order harmonics,the physical conditions for generating a high-intensity circularly polarized harmonic can be obtained.