The proton distribution in inner radiation belt is often affected by strong geomagnetic storm disturbance.Based on the data of the sun-synchronous CSES satellite,which carries with several high energy particle payload...The proton distribution in inner radiation belt is often affected by strong geomagnetic storm disturbance.Based on the data of the sun-synchronous CSES satellite,which carries with several high energy particle payloads and was launched in February 2018,we analyzed the extensive proton variations in the inner radiation belt in a wide energy range of 2 MeV-220 MeV during 2018 major geomagnetic storm.The result indicates that the loss mechanism of protons was energy dependence which is consistent with some previous studies.For protons at low energy 2 MeV-20 MeV,the fluxes were decreased during main phase of the storm and did not come back quickly during the recovery phase,which is likely to be caused by Coulomb collision due to neutral atmosphere density variation.At higher energy 30 MeV-100 MeV,it was confirmed that the magnetic field line curvature scattering plays a significant role in the proton loss phenomenon during this storm.At highest energies>100 MeV,the fluxes of protons kept a stable level and did not exhibit a significant loss during this storm.展开更多
China Seismo-Electromagnetic Satellite (CSES) will be launched at the end of 2016 and the orbit is sun- synchronous and the altitude is about 500 km. The design of CSES satellite and ground segment are introduced in...China Seismo-Electromagnetic Satellite (CSES) will be launched at the end of 2016 and the orbit is sun- synchronous and the altitude is about 500 km. The design of CSES satellite and ground segment are introduced in this paper first. And then the preliminary proposals of scientific data verification and cross-verification in CSES mission are given, which can be used to classify the payloads' operation state, and validate the reliability of data.展开更多
基金Project supported by the Research Fund from the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant No.2021-JBKY-11)the National Natural Science Foundation of China(Grant Nos.41904149 and 12173038)the Stable Support Projects of Basic Scientific Research Institutes(Grant No.A132001W07)。
文摘The proton distribution in inner radiation belt is often affected by strong geomagnetic storm disturbance.Based on the data of the sun-synchronous CSES satellite,which carries with several high energy particle payloads and was launched in February 2018,we analyzed the extensive proton variations in the inner radiation belt in a wide energy range of 2 MeV-220 MeV during 2018 major geomagnetic storm.The result indicates that the loss mechanism of protons was energy dependence which is consistent with some previous studies.For protons at low energy 2 MeV-20 MeV,the fluxes were decreased during main phase of the storm and did not come back quickly during the recovery phase,which is likely to be caused by Coulomb collision due to neutral atmosphere density variation.At higher energy 30 MeV-100 MeV,it was confirmed that the magnetic field line curvature scattering plays a significant role in the proton loss phenomenon during this storm.At highest energies>100 MeV,the fluxes of protons kept a stable level and did not exhibit a significant loss during this storm.
基金supported by the civil space project "CSES Scientific Data Verification Technology Research"National Natural Science Foundation of China(granted No.41374127)
文摘China Seismo-Electromagnetic Satellite (CSES) will be launched at the end of 2016 and the orbit is sun- synchronous and the altitude is about 500 km. The design of CSES satellite and ground segment are introduced in this paper first. And then the preliminary proposals of scientific data verification and cross-verification in CSES mission are given, which can be used to classify the payloads' operation state, and validate the reliability of data.