期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Triangulation of red sprites observed above a mesoscale convective system in North China 被引量:4
1
作者 YongPing Wang GaoPeng Lu +14 位作者 Ming Ma HongBo Zhang YanFeng Fan guoJin Liu ZheRun Wan Yu Wang Kang-Ming Peng ChangZhi Peng FeiFan Liu BaoYou Zhu BinBin Ni xudong gu Long Chen Juan Yi RuoXian Zhou 《Earth and Planetary Physics》 CSCD 2019年第2期111-125,共15页
The triangulation of red sprites was obtained, based on concurrent observations over a mesoscale convective system(MCS) in North China from two stations separated by about 450 km. In addition, broadband sferics from t... The triangulation of red sprites was obtained, based on concurrent observations over a mesoscale convective system(MCS) in North China from two stations separated by about 450 km. In addition, broadband sferics from the sprite-producing lightning were measured at five ground stations, making it possible to locate and identify the individual causative lightning discharges for different elements in this dancing sprite event. The results of our analyses indicate that the sprites were produced above the trailing stratiform region of the MCS, and their parent strokes were located mainly in the peripheral area of the stratiform. The lateral offset between sprites and causative strokes ranges from a few km to more than 50 km. In a particularly bright sprite, with a distinct halo feature and streamers descending down to an altitude of approximately 48 km, the sprite current signal identified in the electric sferic, measured at a range of about 1,110 km, peaked at approximately 1 ms after the return stroke. 展开更多
关键词 SPRITE TRIANGULATION peak current hybrid location
下载PDF
On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm 被引量:9
2
作者 Xin Ma Zheng Xiang +8 位作者 BinBin Ni Song Fu Xing Cao Man Hua DeYu guo YingJie guo xudong gu ZeYuan Liu Qi Zhu 《Earth and Planetary Physics》 CSCD 2020年第6期598-610,共13页
Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shado... Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms,which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing.To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014,we comprehensively analyzed the particle and wave measurements from Van Allen Probes.The dropout event was divided into three periods:before the storm,the initial phase of the storm,and the main phase of the storm.The electron pitch angle distributions(PADs)and electron flux dropouts during the initial and main phases of this storm were investigated,and the evolution of the radial profile of electron phase space density(PSD)and the(μ,K)dependence of electron PSD dropouts(whereμ,K,and L^*are the three adiabatic invariants)were analyzed.The energy-independent decay of electrons at L>4.5 was accompanied by butterfly PADs,suggesting that the magnetopause shadowing process may be the major loss mechanism during the initial phase of the storm at L>4.5.The features of electron dropouts and 90°-peaked PADs were observed only for>1 MeV electrons at L<4,indicating that the wave-induced scattering effect may dominate the electron loss processes at the lower L-shell during the main phase of the storm.Evaluations of the(μ,K)dependence of electron PSD drops and calculations of the minimum electron resonant energies of H+-band electromagnetic ion cyclotron(EMIC)waves support the scenario that the observed PSD drop peaks around L^*=3.9 may be caused mainly by the scattering of EMIC waves,whereas the drop peaks around L^*=4.6 may result from a combination of EMIC wave scattering and outward radial diffusion. 展开更多
关键词 radiation belt electron flux dropouts geomagnetic storm electron phase space density magnetopause shadowing wave-particle interactions
下载PDF
A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver:2.Occurrence features and associated ionospheric parameters 被引量:9
3
作者 Juan Yi xudong gu +7 位作者 Wen Cheng XinYue Tang Long Chen BinBin Ni RuoXian Zhou ZhengYu Zhao Qi Wang LiQing Zhou 《Earth and Planetary Physics》 CSCD 2020年第3期238-245,共8页
As a companion paper to Zhou RX et al.(2020),this study describes application of the automatic detection and analysis module to identify all the tweek atmospherics detectible in the WHU ELF/VLF receiver data collected... As a companion paper to Zhou RX et al.(2020),this study describes application of the automatic detection and analysis module to identify all the tweek atmospherics detectible in the WHU ELF/VLF receiver data collected at Suizhou station during the period of 3 February through 29 February 2016.Detailed analysis of the identified low-latitude tweek events reveals that the occurrence rate varies considerably—from 800 to 6000 tweeks per day,and exhibits a strong diurnal and local time dependence,the peak occurring before local midnight.The diurnal variation of identified tweeks was similar to that of the lightning data obtained by the World-Wide Lightning Location Network(WWLLN)..Estimates of the propagation distance and ionospheric reflection height of tweek atmospherics suggest that the majority(~92%)of the low latitude tweeks originate from the lightning activity within a radius of 4000 km and that they are very likely to reflect from the lower ionospheric D-region at the height range of 75–85 km.At these lower ionospheric reflection altitudes,~74%of the corresponding electron densities from the tweek spectral measurements are within 24.5–27.5 cm^-3.The daily variation of estimated D-region electron densities in the considered period(February 2016)also exhibits a small overall increasing trend from early to later in the month. 展开更多
关键词 ionospheric D-region electron density tweek atmospherics
下载PDF
A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver:Ⅰ. Automatic detection and analysis method 被引量:13
4
作者 RuoXian Zhou xudong gu +8 位作者 KeXin Yang guangSheng Li BinBin Ni Juan Yi Long Chen FuTai Zhao ZhengYu Zhao Qi Wang LiQing Zhou 《Earth and Planetary Physics》 CSCD 2020年第2期120-130,共11页
As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver syste... As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver system, we develop an automatic detection module in terms of the maximum-entropy-spectral-estimation(MESE) method to identify unambiguous instances of low latitude tweeks.We justify the feasibility of our procedure through a detailed analysis of the data observed at the Suizhou Station(31.57°N, 113.32°E) on17 February 2016. A total of 3961 tweeks were registered by visual inspection;the automatic detection method captured 4342 tweeks, of which 3361 were correct ones, producing a correctness percentage of 77.4%(= 3361/4342) and a false alarm rate of 22.6%(= 981/4342).A Short-Time Fourier Transformation(STFT) was also applied to trace the power spectral profiles of identified tweeks and to evaluate the tweek propagation distance. It is found that the fitting accuracy of the frequency–time curve and the relative difference of propagation distance between the two methods through the slope and through the intercept can be used to further improve the accuracy of automatic tweek identification. We suggest that our automatic tweek detection and analysis method therefore supplies a valuable means to investigate features of low latitude tweek atmospherics and associated ionospheric parameters comprehensively. 展开更多
关键词 tweeks automatic detection WHU-VLF receiver
下载PDF
An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements 被引量:4
5
作者 JingZhi Wang Qi Zhu +7 位作者 xudong gu Song Fu Jianguang guo XiaoXin Zhang Juan Yi YingJie guo BinBin Ni Zheng Xiang 《Earth and Planetary Physics》 CSCD 2020年第3期246-265,共20页
Using wave measurements from the EMFISIS instrument onboard Van Allen Probes,we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves.To reproduce these empirical results,we ... Using wave measurements from the EMFISIS instrument onboard Van Allen Probes,we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves.To reproduce these empirical results,we establish a fitting model that is a thirdorder polynomial function of L-shell,magnetic local time(MLT),magnetic latitude(MLAT),and AE*.Quantitative comparisons indicate that the model’s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensity,including substorm dependence and the MLT asymmetry.Our results therefore provide a useful analytic model that can be readily employed in future simulations of global radiation belt electron dynamics under the impact of plasmaspheric hiss waves in geospace. 展开更多
关键词 hiss Van Allen Probes global model
下载PDF
Simultaneous occurrence of four magnetospheric wave modes and the resultant combined scattering effect on radiation belt electrons 被引量:1
6
作者 YiWen Zhao Zheng Xiang +8 位作者 xudong gu BinBin Ni Xin Ma YueQun Lou LuHuai Jiao RuoXian Zhou DeYu guo YangXiZi Liu JunHu Dong 《Earth and Planetary Physics》 EI CSCD 2022年第6期563-575,共13页
We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based o... We report a representative concurrent event of four wave modes at L≈5.0,including electrostatic electron cyclotron harmonic(ECH)waves,exohiss,magnetosonic(MS)waves,and electromagnetic ion cyclotron(EMIC)waves,based on the observations from Van Allen Probe A on October 15,2015.The diffusion coefficients induced by these waves are calculated by using both the Full Diffusion Code and test particle simulations.Moreover,the scattering effects of these waves on energetic electrons are simulated by using a two-dimensional Fokker-Planck diffusion model.The results show that ECH waves mainly scatter low-pitch-angle(<20°)electrons at 0.1-10 keV;exohiss can significantly scatter hundreds of kiloelectron volt electrons to form a reversed energy spectrum;MS waves mainly affect high-pitch-angle electrons(>60°);and EMIC waves scatter only>5 MeV electrons.The combined scattering effects of exohiss and MS waves are stronger than those of exohiss alone.The top-hat pitch angle distributions produced by exohiss are relaxed after adding the effect of MS waves.Because the energies of electrons scattered by ECH waves and EMIC waves are much lower and higher than those scattered by exohiss and MS waves,respectively,the combined scattering effects with the addition of ECH and EMIC waves show little difference from the results for the combination of MS waves and exohiss.These results suggest that distinct wave modes can occur simultaneously and scatter electrons in combination or individually,which requires careful consideration in future global simulations of the complex dynamics of radiation belt energetic electrons. 展开更多
关键词 ECH waves exohiss MS waves EMIC waves radiation belts
下载PDF
Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters 被引量:3
7
作者 BinBin Ni Jing Huang +6 位作者 YaSong Ge Jun Cui Yong Wei xudong gu Song Fu Zheng Xiang ZhengYu Zhao 《Earth and Planetary Physics》 2018年第1期1-14,共14页
Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination o... Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites. 展开更多
关键词 Jovian radiation BELTS whistler-mode CHORUS resonant wave-particle interactions magnetospheric state
下载PDF
Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons 被引量:2
8
作者 Jing Huang xudong gu +4 位作者 BinBin Ni Qiong Luo Song Fu Zheng Xiang WenXun Zhang 《Earth and Planetary Physics》 2018年第5期371-383,共13页
Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient... Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient magnetospheric and wave parameters has been investigated, there is rather limited understanding regarding the extent to which the dynamic evolution of Jovian radiation belt electrons, under the impact of chorus wave scattering, depends on the electron distribution profiles. We adopt a group of reasonable initial conditions based upon the available observations and models for quantitative analyses. We find that inclusion of pitch angle variation in initial conditions can result in increased electron losses at lower pitch angles and substantially modify the pitch angle evolution profiles of > ~500 keV electrons, while variations of electron energy spectrum tend to modify the evolution primarily of 1 MeV and 5 MeV electrons. Our results explicitly demonstrate the importance to the radiation belt electron dynamics in the Jovian magnetosphere of the initial shape of the electron phase space density, and indicate the extent to which variations in electron energy spectrum and pitch angle distribution can contribute to the evolution of Jovian radiation belt electrons caused by chorus wave scattering. 展开更多
关键词 Jovian radiation belt whistler-mode chorus wave-particle interactions electron distribution profile
下载PDF
Stationary response of stochastic viscoelastic system with the right unilateral nonzero offset barrier impacts
9
作者 Deli Wang Wei Xu xudong gu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期195-204,共10页
The stationary response of viscoelastic dynamical system with the right unilateral nonzero offset barrier impacts subjected to stochastic excitations is investigated. First, the viscoelastic force is approximately tre... The stationary response of viscoelastic dynamical system with the right unilateral nonzero offset barrier impacts subjected to stochastic excitations is investigated. First, the viscoelastic force is approximately treated as equivalent terms associated with effects. Then, the free vibro-impact(VI) system is absorbed to describe the periodic motion without impacts and quasi-periodic motion with impacts based upon the level of system energy. The stochastic averaging of energy envelope(SAEE) is adopted to seek the stationary probability density functions(PDFs). The detailed theoretical results for Van der Pol viscoelastic VI system with the right unilateral nonzero offset barrier are solved to demonstrate the important effects of the viscoelastic damping and nonzero rigid barrier impacts condition. Monte Carlo(MC) simulation is also performed to verify the reliability of the suggested approach. The stochastic P-bifurcation caused by certain system parameters is further explored. The variation of elastic modulus from negative to zero and then to positive witnesses the evolution process of stochastic P-bifurcation. From the vicinity of the common value to a wider range, the relaxation time induces the stochastic P-bifurcation in the two interval schemes. 展开更多
关键词 viscoelastic system RIGHT UNILATERAL nonzero offset BARRIER IMPACTS STOCHASTIC AVERAGING of energy envelope(SAEE) STOCHASTIC P-bifurcation
下载PDF
Modeling the energetic electron fluxes in the inner radiation belt based on a drift-source model
10
作者 Zheng Xiang BinBin Ni +8 位作者 YangXiZi Liu xudong gu Song Fu Wei Xu Xing Cao Xin Ma DeYu guo JunHu Dong JingLe Hu 《Earth and Planetary Physics》 EI CSCD 2023年第1期100-108,共9页
The Macao Science Satellite-1(MSS-1),designed by the Macao University of Science and Technology and the National Space Science Center(NSSC)of China,is equipped to detect the fine structure of the magnetic field over t... The Macao Science Satellite-1(MSS-1),designed by the Macao University of Science and Technology and the National Space Science Center(NSSC)of China,is equipped to detect the fine structure of the magnetic field over the South Atlantic Anomaly(SAA)region,monitoring geomagnetic field variations,and obtaining the energetic electron spectrum distributions in the Earth’s inner radiation belt.In this study,we simulate the distributions of trapped,quasi-trapped,and untrapped electrons along the orbit of MSS-1 based on a drift-source model.The simulation results show that the particle detector with 90°looking direction can observe trapped electrons in the SAA region,untrapped electrons in the regions conjugated with the SAA region at the north hemisphere,and quasitrapped electrons in all other regions.In contrast,the detectors with<60°looking directions can measure only untrapped electrons.Generally,quasi-trapped electron fluxes accumulate along the drift trajectory and are due primarily to CRAND,until reaching the SAA region where quasi-trapped electrons are all lost into the atmosphere. 展开更多
关键词 Earth’s inner belt drift-source model quasi-trapped electron CRAND
下载PDF
Artificial modification of Earth's radiation belts by ground-based very-low-frequency(VLF)transmitters 被引量:5
11
作者 Binbin NI Man HUA +4 位作者 xudong gu Song FU Zheng XIANG Xing CAO Xin MA 《Science China Earth Sciences》 SCIE EI CSCD 2022年第3期391-413,共23页
Wave-particle interactions play a fundamental role in the dynamic variability of Earth’s donut-shaped radiation belts that are highly populated by magnetically trapped energetic particles and characteristically separ... Wave-particle interactions play a fundamental role in the dynamic variability of Earth’s donut-shaped radiation belts that are highly populated by magnetically trapped energetic particles and characteristically separated by the slot devoid of high energetic electrons.Owing to the continuous accumulation of high-quality wave and particle measurements from multiple satellites in geospace,the important contribution of ground-based very-low-frequency(VLF)transmitter waves to the electron dynamics in the near-Earth space has been unprecedently advanced,in addition to those established findings of the significant effects of a variety of naturally occurring magnetospheric waves.This paper focuses on the artificial modification of Earth’s inner radiation belt and slot by artificial VLF transmitter emissions.We review the global distributions of VLF transmitter waves in geospace,their scattering effects on radiation belt electrons in terms of both theoretical and observational analyses,and diffusion simulation results of wave-particle interactions along with data-model comparisons.We start with a brief review of the radiation belt electron dynamics and an introduction of anthropogenic VLF transmitter waves.Subsequently,we review the global morphology of in situ VLF transmitter waves corresponding to different transmitter locations,including their day-night asymmetry,geographic distributions,seasonal and geomagnetic activity dependence,and wave propagation features.Existed theoretical and observational analyses of electron scattering effects by VLF transmitter waves are then reviewed to approach the underlying physics that can modulate the spatio-temporal variations of the electron radiation belts.Further Fokker-Planck electron diffusion simulations and their comparisons with realistic satellite observations clearly indicate that VLF transmitter emissions can effectively remove energetic electrons to produce a radially bifurcated electron belt,thereby quantitatively confirming the direct link between operations of VLF transmitters at ground and changes of the energetic electron environment in space.We finally discuss the unsolved problems and possible future research in this area,which has important implications for potential mitigation of the natural particle radiation environment with active means. 展开更多
关键词 VLF transmitters Wave-particle interactions Electron precipitation Earth’s radiation belts Flux bifurcation
原文传递
Identification of ring current proton precipitation driven by scattering of electromagnetic ion cyclotron waves 被引量:1
12
作者 Binbin Ni Yang Zhang xudong gu 《Fundamental Research》 CAS CSCD 2023年第2期257-264,共8页
Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which ho... Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which however lacks direct multi-point observations to establish the underlying physical connection.Based upon a robust conjunction between the satellite pair of Van Allen Probe B and NOAA-19,we perform a detailed analysis to capture simultaneous enhancements of EMIC waves and ring current proton precipitation.By assuming that the ring current proton precipitation is mainly caused by EMIC wave scattering,we establish a physical model between the wave-driven proton diffusion and the ratio of precipitated-to-trapped proton count rates,which is subsequently applied to infer the intensity of EMIC waves required to cause the observed proton precipitation.Our simulations indicate that the model results of EMIC wave intensity,obtained using either the observed or empirical Gaussian wave frequency spectrum,are consistent with the wave observations,within a factor of 1.5.Our study therefore strongly supports the dominant contribution of EMIC waves to the ring current proton precipitation,and offers a valuable means to construct the global profile of EMIC wave intensity using low-altitude NOAA POES proton measurements,which generally have a broad L-shell coverage and high time resolution in favor of near-real-time conversion of the global EMIC wave distribution. 展开更多
关键词 Electromagnetic ion cyclotron waves Ring current protons Wave-particle interactions Conjugate observations Precipitation losses
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部