The geometry of the Dabie Mountains is manifested in terms of the distribution of petro-tectonic units in three dimensions. It is identified into three segments from east to west, four horizons in vertical profiles an...The geometry of the Dabie Mountains is manifested in terms of the distribution of petro-tectonic units in three dimensions. It is identified into three segments from east to west, four horizons in vertical profiles and eight petro- tectonic units from north to south. Three segments are the east, middle and west segments. Four horizons, from top to bottom, are two different meta-tectonic mélange in the uppermost part, underthrust basement and cover below them, and mantle at the bottom of the profiles. Eight petro-tectonic units from north to south are: (1) the hinterland basin, (2) the meta -flysch, (3) the ultramafic rock belt (UM) + Sujiahe eclogite belt (SH), (4) eclogite belt 2 (Ec2) with most eclogites of continental affinity, (5) eclogite belt 1 (Ecl1) with some eclogite of oceanic affinity, (6) the Dabie complex or underthrust basement of the Yangtze continent, (7) the Susong and Zhangbaling Groups or underthrust cover of the Yangtze continent and (8) the foreland belt. The (3), (4) and (5) units belong to meta-tectonic mélange. Some ultrahigh pressure metamorphic minerals such as coesite and micro-diamonds have been found in (3) and (4) units; a possible ultrahigh pressure mineral, clinozoisite aggregate pseudomorph after lawsonite, was found in unit (5). The three tectonic units are speculated to be coherent initially; the UM and SH units are suggested to be the root belt in the east, middle and west segments respectively. The kinematics of the Dabie orogen is divided into three stages: top-to-south thrusting during the eclogite-granulite facies metamorphism, top-to-north extension during the amphibolite metamorphic stage, and faults or shear bands of brittle deformation and greenschist facies metamorphism were formed in the post-orogenic stage since the Late Jurassic and the movement pictures of these faults is different from each other.展开更多
Petrologic geochemistry and isotopic chronology of the eclogites sug ge st that most of the eclogites in northern Dabie Mountains produced from the Tria ssic Yangtze subducted continental crust (lower crust and formed...Petrologic geochemistry and isotopic chronology of the eclogites sug ge st that most of the eclogites in northern Dabie Mountains produced from the Tria ssic Yangtze subducted continental crust (lower crust and formed during the deep subduction) and the metamorphosed mafic untramafic belt with eclogite, marble and meta peridotite blocks around the Mozitan Xiaotian fault zone may represen t the meta tectonic melange produced during the active subduction of an ancient oceanic slab and subsequent collision between the Yangtze and North China conti nental plates. The cooling history of the eclogites from ~900 ℃ to 300 ℃ can b e subdivided into three stages: one isothermal stage and two rapid cooling stage s. The initial stage between (230±6) and 210 Ma was a near isothermal or tempe rature rise process corresponding to the retrograded metamorphism of granulite facies with a rapid uplift of 4 mm/a, then two fast cooling stages occurred with cooling rate of ~10 ℃/Ma during 210 Ma to (172±3) Ma and ~4 ℃/Ma durin g (172±3) Ma to 130 Ma. After the peak metamorphism of eclogite facies, their in itial isothermal stage with slower uplift rate and cooling rate and high T overprinting of granulite facies metamorphism is the major difference between t he eclogites in northern Dabie Mountains from those in southern Dabie Mountains. This may be one of the most important reasons to preserve few evidences of earl ier ultrahigh pressure metamorphism.展开更多
The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogit...The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e.g., quartz needles in Na-clinopyroxene and rutile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called “double symplectite” here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g., omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process.展开更多
Micro-diamonds were only found ten years ago in eclogite associated with marble at Xindian in the Dabie Mountains. This paper reports our new finding of micro-diamonds not only in eclogites at Maobei in the Sulu regio...Micro-diamonds were only found ten years ago in eclogite associated with marble at Xindian in the Dabie Mountains. This paper reports our new finding of micro-diamonds not only in eclogites at Maobei in the Sulu region and at Xindian and Laoyoufang in the south part of the Dabie Mountains (South Dabie), but also in eclogites at Baizhangya and Huangweihe in the northern part of the Dabie Mountains (North Dabie) that has usually been considered not to experience ultrahigh pressure metamorphism. Except the micro-diamond at Huangweihe that was found from the artificial heavy sands of zircons used for isotopic dating, the micro-diamonds from other localities were identified in thin sections of the eclogites. Besides a few interstitial grains, most of the micro-diamond grains in thin sections occur as inclusion in garnet. Three crystals of micro- diamond at Maobei in the Sulu region are sized in 120, 60 and 30 mm, respectively. Crystal forms look like octahedron and the composite of octahedron and hexahedron. The largest micro-diamond crystal comes from Xindian, which is measured to be 180 mm in diameter with distinct zonal structure and inclusions. The zonal structure occurs as an inclined octahedron inside rounded by an incomplete hexagonal girdle. A smaller micro-diamond inclusion occurs inside the central octahedron, and a larger graphite inclusion is within the outer zone. The Laoyoufang micro-diamond is partially retrograded to graphite. Micro-diamond from the Baizhangya eclogite in the ultramafic rock belt of North Dabie is an aggregate of 70 mm×90 mm in size. All the micro-diamonds are confirmed by the Raman spectrum analysis. The occurrence of the micro-diamonds from the eclogites in the ultramafic rock belt of North Dabie demonstrates that this region was also subjected to ultrahigh pressure metamorphism as well as the South Dabie did.展开更多
基金financed by 973 Chinese National Key Project for Basic Research(2003CB716500)the Scientific Investigation of Chinese Continental Scientific Drilling Project(2001 CCB00900)National Natural Science Foundation of China(Grant No.40172079),Anhui Bureau of Geology and Mineral Resources
文摘The geometry of the Dabie Mountains is manifested in terms of the distribution of petro-tectonic units in three dimensions. It is identified into three segments from east to west, four horizons in vertical profiles and eight petro- tectonic units from north to south. Three segments are the east, middle and west segments. Four horizons, from top to bottom, are two different meta-tectonic mélange in the uppermost part, underthrust basement and cover below them, and mantle at the bottom of the profiles. Eight petro-tectonic units from north to south are: (1) the hinterland basin, (2) the meta -flysch, (3) the ultramafic rock belt (UM) + Sujiahe eclogite belt (SH), (4) eclogite belt 2 (Ec2) with most eclogites of continental affinity, (5) eclogite belt 1 (Ecl1) with some eclogite of oceanic affinity, (6) the Dabie complex or underthrust basement of the Yangtze continent, (7) the Susong and Zhangbaling Groups or underthrust cover of the Yangtze continent and (8) the foreland belt. The (3), (4) and (5) units belong to meta-tectonic mélange. Some ultrahigh pressure metamorphic minerals such as coesite and micro-diamonds have been found in (3) and (4) units; a possible ultrahigh pressure mineral, clinozoisite aggregate pseudomorph after lawsonite, was found in unit (5). The three tectonic units are speculated to be coherent initially; the UM and SH units are suggested to be the root belt in the east, middle and west segments respectively. The kinematics of the Dabie orogen is divided into three stages: top-to-south thrusting during the eclogite-granulite facies metamorphism, top-to-north extension during the amphibolite metamorphic stage, and faults or shear bands of brittle deformation and greenschist facies metamorphism were formed in the post-orogenic stage since the Late Jurassic and the movement pictures of these faults is different from each other.
文摘Petrologic geochemistry and isotopic chronology of the eclogites sug ge st that most of the eclogites in northern Dabie Mountains produced from the Tria ssic Yangtze subducted continental crust (lower crust and formed during the deep subduction) and the metamorphosed mafic untramafic belt with eclogite, marble and meta peridotite blocks around the Mozitan Xiaotian fault zone may represen t the meta tectonic melange produced during the active subduction of an ancient oceanic slab and subsequent collision between the Yangtze and North China conti nental plates. The cooling history of the eclogites from ~900 ℃ to 300 ℃ can b e subdivided into three stages: one isothermal stage and two rapid cooling stage s. The initial stage between (230±6) and 210 Ma was a near isothermal or tempe rature rise process corresponding to the retrograded metamorphism of granulite facies with a rapid uplift of 4 mm/a, then two fast cooling stages occurred with cooling rate of ~10 ℃/Ma during 210 Ma to (172±3) Ma and ~4 ℃/Ma durin g (172±3) Ma to 130 Ma. After the peak metamorphism of eclogite facies, their in itial isothermal stage with slower uplift rate and cooling rate and high T overprinting of granulite facies metamorphism is the major difference between t he eclogites in northern Dabie Mountains from those in southern Dabie Mountains. This may be one of the most important reasons to preserve few evidences of earl ier ultrahigh pressure metamorphism.
文摘The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e.g., quartz needles in Na-clinopyroxene and rutile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called “double symplectite” here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g., omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process.
基金supported by the National Natural Science Foundation of China(Grant No.40172079)the Scientific Investigation of Chinese Continental Scientific Drilling Project(Grant No.2001 CCB00900).
文摘Micro-diamonds were only found ten years ago in eclogite associated with marble at Xindian in the Dabie Mountains. This paper reports our new finding of micro-diamonds not only in eclogites at Maobei in the Sulu region and at Xindian and Laoyoufang in the south part of the Dabie Mountains (South Dabie), but also in eclogites at Baizhangya and Huangweihe in the northern part of the Dabie Mountains (North Dabie) that has usually been considered not to experience ultrahigh pressure metamorphism. Except the micro-diamond at Huangweihe that was found from the artificial heavy sands of zircons used for isotopic dating, the micro-diamonds from other localities were identified in thin sections of the eclogites. Besides a few interstitial grains, most of the micro-diamond grains in thin sections occur as inclusion in garnet. Three crystals of micro- diamond at Maobei in the Sulu region are sized in 120, 60 and 30 mm, respectively. Crystal forms look like octahedron and the composite of octahedron and hexahedron. The largest micro-diamond crystal comes from Xindian, which is measured to be 180 mm in diameter with distinct zonal structure and inclusions. The zonal structure occurs as an inclined octahedron inside rounded by an incomplete hexagonal girdle. A smaller micro-diamond inclusion occurs inside the central octahedron, and a larger graphite inclusion is within the outer zone. The Laoyoufang micro-diamond is partially retrograded to graphite. Micro-diamond from the Baizhangya eclogite in the ultramafic rock belt of North Dabie is an aggregate of 70 mm×90 mm in size. All the micro-diamonds are confirmed by the Raman spectrum analysis. The occurrence of the micro-diamonds from the eclogites in the ultramafic rock belt of North Dabie demonstrates that this region was also subjected to ultrahigh pressure metamorphism as well as the South Dabie did.