A new discrete isospectral problem is introduced,from which the coupled discrete KdV hierarchy is deduced and is written in its Hamiltonian form by means of the trace identity.It is shown that each equation in the res...A new discrete isospectral problem is introduced,from which the coupled discrete KdV hierarchy is deduced and is written in its Hamiltonian form by means of the trace identity.It is shown that each equation in the resulting hierarchy is Liouville integrable.Furthermore,an infinite number of conservation laws are shown explicitly by direct computation.展开更多
A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable sym...A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonli-nearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting lattice soliton equations.展开更多
基金Scientific Research Award Foundation for Shandong Provincial outstanding young andmiddle- aged scientist
文摘A new discrete isospectral problem is introduced,from which the coupled discrete KdV hierarchy is deduced and is written in its Hamiltonian form by means of the trace identity.It is shown that each equation in the resulting hierarchy is Liouville integrable.Furthermore,an infinite number of conservation laws are shown explicitly by direct computation.
文摘A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonli-nearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting lattice soliton equations.