In this work,we are concerned with a time-splitting Fourier pseudospectral(TSFP)discretization for the Klein-Gordon(KG)equation,involving a dimensionless parameterε∈(0,1].In the nonrelativistic limit regime,the smal...In this work,we are concerned with a time-splitting Fourier pseudospectral(TSFP)discretization for the Klein-Gordon(KG)equation,involving a dimensionless parameterε∈(0,1].In the nonrelativistic limit regime,the smallεproduces high oscillations in exact solutions with wavelength of O(ε^(−2))in time.The key idea behind the TSFP is to apply a time-splitting integrator to an equivalent first-order system in time,with both the nonlinear and linear subproblems exactly integrable in time and,respectively,Fourier frequency spaces.The method is fully explicit and time reversible.Moreover,we establish rigorously the optimal error bounds of a second-order TSFP for fixedε=O(1),thanks to an observation that the scheme coincides with a type of trigonometric integrator.As the second task,numerical studies are carried out,with special effortsmade to applying the TSFP in the nonrelativistic limit regime,which are geared towards understanding its temporal resolution capacity and meshing strategy for O(ε^(−2))-oscillatory solutions when 0<ε≪1.It suggests that the method has uniform spectral accuracy in space,and an asymptotic O(ε^(−2)D^(t2))temporal discretization error bound(Dt refers to time step).On the other hand,the temporal error bounds for most trigonometric integrators,such as the well-established Gautschi-type integrator in[6],are O(ε^(−4)D^(t2)).Thus,our method offers much better approximations than the Gautschi-type integrator in the highly oscillatory regime.These results,either rigorous or numerical,are valid for a splitting scheme applied to the classical relativistic NLS reformulation as well.展开更多
基金supported by the Singapore A*STAR SERC PSF-Grant 1321202067。
文摘In this work,we are concerned with a time-splitting Fourier pseudospectral(TSFP)discretization for the Klein-Gordon(KG)equation,involving a dimensionless parameterε∈(0,1].In the nonrelativistic limit regime,the smallεproduces high oscillations in exact solutions with wavelength of O(ε^(−2))in time.The key idea behind the TSFP is to apply a time-splitting integrator to an equivalent first-order system in time,with both the nonlinear and linear subproblems exactly integrable in time and,respectively,Fourier frequency spaces.The method is fully explicit and time reversible.Moreover,we establish rigorously the optimal error bounds of a second-order TSFP for fixedε=O(1),thanks to an observation that the scheme coincides with a type of trigonometric integrator.As the second task,numerical studies are carried out,with special effortsmade to applying the TSFP in the nonrelativistic limit regime,which are geared towards understanding its temporal resolution capacity and meshing strategy for O(ε^(−2))-oscillatory solutions when 0<ε≪1.It suggests that the method has uniform spectral accuracy in space,and an asymptotic O(ε^(−2)D^(t2))temporal discretization error bound(Dt refers to time step).On the other hand,the temporal error bounds for most trigonometric integrators,such as the well-established Gautschi-type integrator in[6],are O(ε^(−4)D^(t2)).Thus,our method offers much better approximations than the Gautschi-type integrator in the highly oscillatory regime.These results,either rigorous or numerical,are valid for a splitting scheme applied to the classical relativistic NLS reformulation as well.