The need for high-performance and cost-effective gas sensors in industrial and domestic settings has led to ad-vancements in gas sensors based on metal-organic frameworks(MOFs).However,challenges remain in the design ...The need for high-performance and cost-effective gas sensors in industrial and domestic settings has led to ad-vancements in gas sensors based on metal-organic frameworks(MOFs).However,challenges remain in the design and synthesis of MOFs with customized structure and affinity toward targeted gases and their integration onto miniaturized electronic devices.The deliberate design of MOFs with desired characteristics is hindered by limited understanding of the interactions between MOFs and analytes.Furthermore,there is a lack of customization of relevant MOF-based sensors with salient sensing performance and their integration into sensor arrays to align with different application scenarios.The combination of machine learning or artificial intelligence(AI)with gas sensors also represents a promising avenue for future research.Herein,we provide a mini-review of recent ac-complishments in MOF-based gas sensors,covering materials design and device integration.The challenges of miniaturization and building smart sensing systems with anomaly detection,self-calibration,and lifetime pre-diction are also discussed.展开更多
基金supported by the National Natural Science Foundation of China(22201226)the Natural Science Foundation of Shannxi(2022JQ-469)+2 种基金the Special Fund for Basic Scientific Research of Central College of Chang an University(No.300102313110)support from"High-Level Overseas Talent Returming to China"projectthe support from Xi'an Jiaotong University within the framework of the"Young Talent Support Plan".
文摘The need for high-performance and cost-effective gas sensors in industrial and domestic settings has led to ad-vancements in gas sensors based on metal-organic frameworks(MOFs).However,challenges remain in the design and synthesis of MOFs with customized structure and affinity toward targeted gases and their integration onto miniaturized electronic devices.The deliberate design of MOFs with desired characteristics is hindered by limited understanding of the interactions between MOFs and analytes.Furthermore,there is a lack of customization of relevant MOF-based sensors with salient sensing performance and their integration into sensor arrays to align with different application scenarios.The combination of machine learning or artificial intelligence(AI)with gas sensors also represents a promising avenue for future research.Herein,we provide a mini-review of recent ac-complishments in MOF-based gas sensors,covering materials design and device integration.The challenges of miniaturization and building smart sensing systems with anomaly detection,self-calibration,and lifetime pre-diction are also discussed.