期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The mechanism of deep material transport and seismogenic environment of the Xiaojiang fault system revealed by 3-D magnetotelluric study 被引量:2
1
作者 Nian YU xuben wang +4 位作者 Dewei LI Xin LI Enci wang Wenxin KONG Tianyang LI 《Science China Earth Sciences》 SCIE EI CSCD 2022年第6期1128-1145,共18页
The Xiaojiang fault system(XJFS), located to the southeast of the Tibetan Plateau, has a complicated tectonic history and is an ideal location to study the Tibetan Plateau in terms of its deep material transport mecha... The Xiaojiang fault system(XJFS), located to the southeast of the Tibetan Plateau, has a complicated tectonic history and is an ideal location to study the Tibetan Plateau in terms of its deep material transport mechanism and the effects of past tectonic events. In this study, broadband and long-period magnetotelluric data were collected above this fault system and inverted to build a 3-D resistivity model of the lithosphere. As shown in the model, at upper-middle crustal depths, three high-resistivity anomalies separate the strike-slip faults located in the study area, which may be the remnants of the Emeishan large igneous province that was destroyed and modified by Cenozoic crustal activity. The lower crust is characterized by significant lowresistivity anomalies that extend downward to the upper mantle. The low-resistivity anomalies in the upper crust may be caused by brines or/and conductive minerals(e.g., graphite and sulfides), and the possible reason for the low-resistivity anomalies that were imaged in the lower crust and upper mantle may be the presence of hydrogen in nominally anhydrous minerals and partial melts. According to the seismic activity distribution and resistivity structure, we propose dividing the seismic activity of the study area into three categories: tectonic earthquakes, earthquakes with no active faults on the surface, and other scattered earthquakes with no general features. Seismic activities are controlled by tectonic activities, fluid transportation, and the adjustment of the Earth's stress field. It is believed that there is a mutually reinforcing relationship between seismic activity and deep fluids. Fluids could lower the frictional force in faults, promote movement, and thus induce earthquakes;on the other hand,seismic activities and the long-term strike-slip movements of faults could generate heat and increase the connectivity of fluids,which decreases the strength of the crust and facilitates the flow of fluids. Based on the resistivity model, it is demonstrated that the present tectonic activity in the XJFS is complicated and characterized by rigid block extrusion along strike-slip faults in the upper crust, ductile deformation with channel flow in the lower crust, and the upwelling of mantle materials. In combination with previous studies, our results indicate that the weak crustal materials from the Tibetan Plateau are blocked by(1) the lithosphere modified by the Emeishan plume and(2) the South China block when flowing through the Sichuan-Yunnan block. Therefore,these weak materials turn to the southwest direction along the XJFS, then pass through the Red River fault and enter the Indochina block. 展开更多
关键词 The Xiaojiang fault MAGNETOTELLURIC Seismogenic environment Emeishan mantle plume Crustal flow
原文传递
Steep subduction of the Indian continental mantle lithosphere beneath the eastern Himalaya revealed by gravity anomalies
2
作者 Shengxian LIANG xuben wang +5 位作者 Zhengwei XU Yanpei DAI Yonghua wang Jing GUO Yanjie JIAO Fu LI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第9期1994-2010,共17页
The geometry and deformation of the Indian continental mantle lithosphere(ICML)beneath the India-Eurasia collision zone are critical to understanding the accommodation of continent-continent convergence.In this paper,... The geometry and deformation of the Indian continental mantle lithosphere(ICML)beneath the India-Eurasia collision zone are critical to understanding the accommodation of continent-continent convergence.In this paper,the distribution of residual gravity anomalies in the upper mantle of southern Tibet is estimated using the gravity data and seismic velocity models,and the heterogeneous density distribution of the upper-mantle is then recovered through three-dimensional gravity inversion.The results reveal a low-density anomaly(~300 km W-E and~100 km N-S)in the upper mantle under the eastern Himalaya,while there is no obvious density anomaly under the western Himalaya.The western boundary of the low-density anomaly coincides with the Yadong-Gulu Rift(YGR)on the surface(89°–90°E),and its southern boundary is located at~28°N,approximately 130 km southward from the Indus-Yarlung suture,probably representing the mantle suture at depth.This observation indicates that,in contrast to the western ICML which is probably underthrusting at a shallow angle,the eastern ICML be likely subducting steeply,accompanying asthenosphere upwelling.Such a laterally varying geometry suggests that a major tearing of the ICML may have taken place from the intersection of the mantle suture and the YGR in the upper mantle.The tearing and the steep subduction of the ICML might be associated with the magmatic and mineralization events in the eastern Himalaya-Gangdese and the formation of the YGR. 展开更多
关键词 Indian continental mantle lithosphere Steep subduction Mantle suture Major tearing point Upper mantle density Himalaya
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部