Background and Aims:Screening for hepatopulmonary syndrome in cirrhotic patients is limited due to the need to perform contrast enhanced echocardiography(CEE)and arterial blood gas(ABG)analysis.We aimed to develop a s...Background and Aims:Screening for hepatopulmonary syndrome in cirrhotic patients is limited due to the need to perform contrast enhanced echocardiography(CEE)and arterial blood gas(ABG)analysis.We aimed to develop a simple and quick method to screen for the presence of intrapulmonary vascular dilation(IPVD)using noninvasive and easily available variables with machine learning(ML)algorithms.Methods:Cirrhotic patients were enrolled from our hospital.All eligible patients underwent CEE,ABG analysis and physical examination.We developed a twostep model based on three ML algorithms,namely,adaptive boosting(termed AdaBoost),gradient boosting decision tree(termed GBDT)and eXtreme gradient boosting(termed Xgboost).Noninvasive variables were input in the first step(the NI model),and for the second step(the NIBG model),a combination of noninvasive variables and ABG results were used.Model performance was determined by the area under the curve of receiver operating characteristics(AUCROCs),precision,recall,F1-score and accuracy.Results:A total of 193 cirrhotic patients were ultimately analyzed.The AUCROCs of the NI and NIBG models were 0.850(0.738–0.962)and 0.867(0.760–0.973),respectively,and both had an accuracy of 87.2%.For both negative and positive cases,the recall values of the NI and NIBG models were both 0.867(0.760–0.973)and 0.875(0.771–0.979),respectively,and the precisions were 0.813(0.690–0.935)and 0.913(0.825–1.000),respectively.Conclusions:We developed a two-step model based on ML using noninvasive variables and ABG results to screen for the presence of IPVD in cirrhotic patients.This model may partly solve the problem of limited access to CEE and ABG by a large numbers of cirrhotic patients.展开更多
基金The project was supported by the National Key R&D Program of China(No.2018YFC0116702 to BY)National Natural Science Foundation of China(No.82070630 to BY and No.81600035 to YC)+1 种基金Medical Innovation Capacity Improvement Program for Medical Staff of the First Affiliated Hospital of the Third Military Medical University(No.SWH2018QNKJ-27 to YJL)Technology Innovation and Application Research and Development Project of Chongqing City(cstc2019jscx-msxmX0237 to BY).
文摘Background and Aims:Screening for hepatopulmonary syndrome in cirrhotic patients is limited due to the need to perform contrast enhanced echocardiography(CEE)and arterial blood gas(ABG)analysis.We aimed to develop a simple and quick method to screen for the presence of intrapulmonary vascular dilation(IPVD)using noninvasive and easily available variables with machine learning(ML)algorithms.Methods:Cirrhotic patients were enrolled from our hospital.All eligible patients underwent CEE,ABG analysis and physical examination.We developed a twostep model based on three ML algorithms,namely,adaptive boosting(termed AdaBoost),gradient boosting decision tree(termed GBDT)and eXtreme gradient boosting(termed Xgboost).Noninvasive variables were input in the first step(the NI model),and for the second step(the NIBG model),a combination of noninvasive variables and ABG results were used.Model performance was determined by the area under the curve of receiver operating characteristics(AUCROCs),precision,recall,F1-score and accuracy.Results:A total of 193 cirrhotic patients were ultimately analyzed.The AUCROCs of the NI and NIBG models were 0.850(0.738–0.962)and 0.867(0.760–0.973),respectively,and both had an accuracy of 87.2%.For both negative and positive cases,the recall values of the NI and NIBG models were both 0.867(0.760–0.973)and 0.875(0.771–0.979),respectively,and the precisions were 0.813(0.690–0.935)and 0.913(0.825–1.000),respectively.Conclusions:We developed a two-step model based on ML using noninvasive variables and ABG results to screen for the presence of IPVD in cirrhotic patients.This model may partly solve the problem of limited access to CEE and ABG by a large numbers of cirrhotic patients.