期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Synthesis of novel silica-supported chelating resin containing tert-butyl 2-picolyamino-N-acetate and its properties for selective adsorption of copper from simulated nickel electrolyte 被引量:5
1
作者 Cai-xia WANG Hui-ping HU +3 位作者 xue-jing qiu Ze-ying CHENG Lu-jia MENG Li ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2553-2565,共13页
A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of... A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of the Si-AMPY-1 resin for Cu(Ⅱ) and Ni(Ⅱ) were studied with batch and column methods. The batch experiments indicated that the Si-AMPY-1 resin adsorbed Ni(Ⅱ) mainly via physisorption, while adsorbed Cu(II) via chemisorption. The column dynamic breakthrough curves revealed thatthe Si-AMPY-1 resin can efficiently separate Cu(Ⅱ) from the simulated nickel electrolyte before the breakthrough point. Moreover, the concentration of Cu(Ⅱ) in the column effluent was decreased to be less than 3 mg/L within the first 43 BV (bed volumes), and the mass ratio of Cu/Ni was 21:1 in the saturated resin, which completely satisfied the industrial requirements of the nickel electrorefining process. Therefore, it was concluded that the Si-AMPY-1 resin can be a promising candidate for the deep removal of Cu(Ⅱ) from the nickel electrolyte. 展开更多
关键词 chelating resin selective adsorption copper removal simulated nickel electrolyte synthesis
下载PDF
Selective recovery of Cu(Ⅱ) through polymer inclusion membranes mediated with 2-aminomethylpyridine derivatives 被引量:2
2
作者 xue-jing qiu Jia TANG +3 位作者 Jun TAN Hui-ping HU Xiao-bo JI Jiu-gang HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3591-3601,共11页
The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyam... The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(AMB), N,N-dioctyl-2-aminomethylpyridine(AMD), tert-butyl 2-(N-octyl-2-picolyamino) acetate(AMC), and N,N-didecyl-2-aminomethylpyridine(AME). The transport flux and selectivity of Cu(Ⅱ) are determined by optimizing composition and structure of carriers and plasticizers. The results show that the hydrophobic modification of 2-aminomethylpyridine derivatives can boost the selective transport of copper ions in PIMs and membrane stability. In the optimum composition of 30 wt.% PVC, 30 wt.% AME, and 40 wt.% NPOE, the initial flux of Cu(Ⅱ) is 5.8×10^(−6) mol·m^(−2)·s^(−1). The FT-IR and XPS spectra identify that the alkyl amine functional groups of AME involve in the transport of copper chloride species. The SAXS analysis demonstrates that the generated micro-channels in PIMs induced by the hydrophobic modification of 2-aminomethylpyridine derivatives can contribute to the enhanced Cu(Ⅱ) flux. 展开更多
关键词 hydrophobic modification 2-aminomethylpyridine derivative polymer inclusion membrane Cu(Ⅱ) separation
下载PDF
A mixed-valence polyoxometalate-based 3D inorganic framework cathode material for high-efficiency rechargeable AZIBs
3
作者 Qing Han Hao-Ran Xiao +7 位作者 Tao Zhou Bing-Chuan Li Liu Yang Ling-Ling Xie xue-jing qiu Xian-Yong Wu Li-Min Zhu Xiao-Yu Cao 《Rare Metals》 SCIE EI CAS CSCD 2024年第8期3677-3691,共15页
The global trend towards new energy storage systems has stimulated the development of electrochemical energy storage technologies.Among these technologies,rechargeable aqueous zinc-ion batteries(AZIBs)have attracted c... The global trend towards new energy storage systems has stimulated the development of electrochemical energy storage technologies.Among these technologies,rechargeable aqueous zinc-ion batteries(AZIBs)have attracted considerable interest as a potential alternative to lithium-ion batteries(LIBs)due to their affordable cost,environmental compatibility and high safety standards.In this study,a high-quality electrode for AZIBs has been successfully developed using a dehydrated mixed-valence polyoxometalate-based three-dimensional(3D)inorganic framework material known as[H_6Mn_(3)V^Ⅳ_(15)V-^Ⅴ_(4O)_(46)(H_2O)_(12)](3D-MnVO).This innovative 3D-MnVO material is built from the alternate connections of{V_(19)O_(46)}"sphere-shaped"clusters andμ_(2)-{Mn(H_(2)O)_(4)}bridges,where each{V_(19)O_(46)}cluster is surrounded by three pairs of vertically distributed{Mn(H_(2)O)_(4)}units,thus resulting in the 3D interpenetrating grid-like network from the infinite[-{V_(19)O_(46)}-μ_(2)-Mn(H_(2)O)_(4)-{V_(19)O_(46)}]_∞chains in three mutually perpendicular directions.The 3D framework structure of 3D-MnVO possesses abundant oxygen vacancies,spacious and multi-level interconnected channels for ion transport,which facilitates the efficient intercalation/deintercalation of hydrated Zn^(2+)into the pores of the primary structure via the intercalation capacitance mechanism.As a result,the 3D-MnVO electrode exhibits excellent diffusion rates and minimal interfacial resistance.At a current density of 0.1 A·g^(-1),the 3D-MnVO cathode delivers a commendable discharge capacity of170.5 mAh·g^(-1)with 81.6%capacity retention after100 charge/discharge cycles.Furthermore,even at a high current density of 1.0 A·g^(-1),the 3D-MnVO electrode delivers a remarkable reversible capacity of198.9 mAh·g^(-1).Our research results provide valuable insights into the development of advanced polyoxometalate-based 3D inorganic framework electrode materials for high-performance rechargeable AZIBs. 展开更多
关键词 CATHODE POLYOXOMETALATE 3D inorganic framework Zinc-ion batteries Energy storage mechanism
原文传递
New insights on(V_(10)O_(28))^(6-)-based electrode materials for energy storage:a brief review 被引量:5
4
作者 Tao Zhou Ling-Ling Xie +9 位作者 Yu Niu Hao-Ran Xiao Yu-Jie Li Qing Han xue-jing qiu Xin-Li Yang Xian-Yong Wu Li-Min Zhu Huan Pang Xiao-Yu Cao 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1431-1445,共15页
Progress in humanity has intensified the demand for efficient and renewable energy storage,which warrants the development of advanced rechargeable batteries such as lithium-ion batteries(LIBs),sodium-ion batteries(SIB... Progress in humanity has intensified the demand for efficient and renewable energy storage,which warrants the development of advanced rechargeable batteries such as lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),zinc-ion batteries(ZIBs),and lithium-sulfur batteries(Li-S batteries).Nevertheless,these batteries still suffer from certain limitations,such as the insufficient capacity and inferior stability in their electrode materials.Therefore,developing a feasible electrode material for Li/Na/Zn ion storage represents a critical challenge.Recently,polyoxovanadates(POVs)materials,particularly decavanadate anion(V_(10)O_(28))^(6-)clusters,have attracted considerate attention as promising battery electrodes,due to their rich multi-electron redox process,high structural stability,simple preparation process,and abundant ligand environment.In this review,we provide an overview of the research progress of(V_(10)O_(28))^(6-)-based materials in various metal-ion battery systems,including LIBs,SIBs,ZIBs,and Li-S batteries.We also discuss the underlying challenges associated with this type of materials,and we provide alternative strategies to overcome these issues.This review aims to facilitate the research and development of the nextgeneration(V_(10)O_(28))^(6-)-based battery materials. 展开更多
关键词 (V_(10)O_(28))^(6-) Electrode materials BATTERIES Energy storage Progress and perspective
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部