期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lower Bounds of Distance Laplacian Spectral Radii of n-Vertex Graphs in Terms of Fractional Matching Number 被引量:1
1
作者 Jin Yan Yan Liu xue-li su 《Journal of the Operations Research Society of China》 EI CSCD 2023年第1期189-196,共8页
A fractional matching of a graph G is a function f: E(G)→[0,1] such that for each vertex v, ∑eϵΓG(v)f(e)≤1.. The fractional matching number of G is the maximum value of ∑e∈E(G)f(e) over all fractional matchings ... A fractional matching of a graph G is a function f: E(G)→[0,1] such that for each vertex v, ∑eϵΓG(v)f(e)≤1.. The fractional matching number of G is the maximum value of ∑e∈E(G)f(e) over all fractional matchings f. Tian et al. (Linear Algebra Appl 506:579–587, 2016) determined the extremal graphs with minimum distance Laplacian spectral radius among n-vertex graphs with given matching number. However, a natural problem is left open: among all n-vertex graphs with given fractional matching number, how about the lower bound of their distance Laplacian spectral radii and which graphs minimize the distance Laplacian spectral radii? In this paper, we solve these problems completely. 展开更多
关键词 Distance Laplacian Spectral radius Fractional matching number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部