Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such r...Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such reservoirs, the reliability of the classical logging evaluation models established for diagenetic reservoirs is questionable. This study used well W8 in the Qiongdongnan Basin to explore the clay content, porosity, saturation, and hydrate-enriched layer identification of a logging-based hydrate reservoir, and it was found that considering the effect of the clay content on the log response is necessary in the logging evaluation of hydrate reservoirs. In the evaluation of clay content, a method based on the optimization inversion method can obtain a more reliable clay content than other methods. Fine-grained sediment reservoirs have a high clay content, and the effect of clay on log responses must be considered when calculating porosity. In addition, combining density logging and neutron porosity logging data can obtain the best porosity calculation results, and the porosity calculation method based on sonic logging predicted that the porosity of the studied reservoir was low. It was very effective to identify hydrate layers based on resistivity, but the clay distribution and pore structure will also affect the relationship between resistivity, porosity and saturation, and it was suggested that the factors effecting the resistivity of different layers should be considered in the saturation evaluation and that a suitable model should be selected. This study also considered the lack of clarity of the relationships among the lithology, physical properties, hydrate-bearing occurrence properties, and log response properties of hydrate reservoirs and the lack of specialized petrophysical models. This research can directly help to improve hydrate logging evaluation.展开更多
Metastasis is one of the main reasons causing death in cancer patients.It was reported that chemotherapy might induce metastasis.In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions ...Metastasis is one of the main reasons causing death in cancer patients.It was reported that chemotherapy might induce metastasis.In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis,the relationship between epithelial-mesenchymal transition(EMT)and doxorubicin(DOX)treatment was investigated and a redox-sensitive small interfering RNA(siRNA)delivery system was designed.DOX-related reactive oxygen species(ROS)were found to be responsible for the invasiveness of tumor cells in vitro,causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1(RAC1).In order to decrease RAC1,a redox-sensitive glycolipid drug delivery system(chitosan-ss-stearylamine conjugate(CSO-ss-SA))was designed to carry siRNA,forming a gene delivery system(CSO-ss-SA/siRNA)downregulating RAC1.CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione(GSH)and showed a significant safety.CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells,reducing the expression of RAC1 protein by 38.2%and decreasing the number of tumor-induced invasion cells by 42.5%.When combined with DOX,CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency.The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.展开更多
基金funded by the Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology(No.MGQNLM-KF202004)Hainan Provincial Natural Science Foundation of China(Nos.422RC746 and 421QN281)+2 种基金the National Natural Science Foundation of China(No.42106213)the China Postdoctoral Science Foundation(Nos.2021M690161 and 2021T140691)the Postdoctorate Funded Project in Hainan Province.
文摘Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such reservoirs, the reliability of the classical logging evaluation models established for diagenetic reservoirs is questionable. This study used well W8 in the Qiongdongnan Basin to explore the clay content, porosity, saturation, and hydrate-enriched layer identification of a logging-based hydrate reservoir, and it was found that considering the effect of the clay content on the log response is necessary in the logging evaluation of hydrate reservoirs. In the evaluation of clay content, a method based on the optimization inversion method can obtain a more reliable clay content than other methods. Fine-grained sediment reservoirs have a high clay content, and the effect of clay on log responses must be considered when calculating porosity. In addition, combining density logging and neutron porosity logging data can obtain the best porosity calculation results, and the porosity calculation method based on sonic logging predicted that the porosity of the studied reservoir was low. It was very effective to identify hydrate layers based on resistivity, but the clay distribution and pore structure will also affect the relationship between resistivity, porosity and saturation, and it was suggested that the factors effecting the resistivity of different layers should be considered in the saturation evaluation and that a suitable model should be selected. This study also considered the lack of clarity of the relationships among the lithology, physical properties, hydrate-bearing occurrence properties, and log response properties of hydrate reservoirs and the lack of specialized petrophysical models. This research can directly help to improve hydrate logging evaluation.
基金Project supported by the National Natural Science Foundation of China(No.81773648)the Zhejiang Provincial Natural Science Foundation of China(No.D19H30001)the Chinese Postdoc Funding(No.2018M630686).
文摘Metastasis is one of the main reasons causing death in cancer patients.It was reported that chemotherapy might induce metastasis.In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis,the relationship between epithelial-mesenchymal transition(EMT)and doxorubicin(DOX)treatment was investigated and a redox-sensitive small interfering RNA(siRNA)delivery system was designed.DOX-related reactive oxygen species(ROS)were found to be responsible for the invasiveness of tumor cells in vitro,causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1(RAC1).In order to decrease RAC1,a redox-sensitive glycolipid drug delivery system(chitosan-ss-stearylamine conjugate(CSO-ss-SA))was designed to carry siRNA,forming a gene delivery system(CSO-ss-SA/siRNA)downregulating RAC1.CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione(GSH)and showed a significant safety.CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells,reducing the expression of RAC1 protein by 38.2%and decreasing the number of tumor-induced invasion cells by 42.5%.When combined with DOX,CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency.The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.