期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sequential good lattice point sets for computer experiments
1
作者 xue-ru zhang Yong-Dao Zhou +1 位作者 Min-Qian Liu Dennis K.J.Lin 《Science China Mathematics》 SCIE CSCD 2024年第9期2153-2170,共18页
Sequential Latin hypercube designs(SLHDs) have recently received great attention for computer experiments, with much of the research restricted to invariant spaces. The related systematic construction methods are infl... Sequential Latin hypercube designs(SLHDs) have recently received great attention for computer experiments, with much of the research restricted to invariant spaces. The related systematic construction methods are inflexible, and algorithmic methods are ineffective for large designs. For designs in contracting spaces, systematic construction methods have not been investigated yet. This paper proposes a new method for constructing SLHDs via good lattice point sets in various experimental spaces. These designs are called sequential good lattice point(SGLP) sets. Moreover, we provide efficient approaches for identifying the(nearly)optimal SGLP sets under a given criterion. Combining the linear level permutation technique, we obtain a class of asymptotically optimal SLHDs in invariant spaces, where the L1-distance in each stage is either optimal or asymptotically optimal. Numerical results demonstrate that the SGLP set has a better space-filling property than the existing SLHDs in invariant spaces. It is also shown that SGLP sets have less computational complexity and more adaptability. 展开更多
关键词 contracting space maximin distance nested Latin hypercube design sequential design space-fillingdesign
原文传递
Integration of urchin-like MnCo_(2)O_(4)@C core–shell nanowire arrays within porous copper current collector for superior performance Li-ion battery anodes
2
作者 xue-ru zhang Qiong Wu +3 位作者 Yong zhang Xi-Fei Li Ting Xie Yu-Cheng Wu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期599-611,共13页
Spinel MnCo_(2)O_(4) is a promising energy storage candidate as anode materials in lithium-ion batteries owing to synergistic effects of two intrinsic solid-state redox couples.However,low conductivity,poor rate capac... Spinel MnCo_(2)O_(4) is a promising energy storage candidate as anode materials in lithium-ion batteries owing to synergistic effects of two intrinsic solid-state redox couples.However,low conductivity,poor rate capacity and rapid capacity fading have seriously impaired its practical applications.To overcome the inferiorities,urchin-like MnCo_(2)O_(4)@C core–shell nanowire arrays have been fabricated directly within a porous copper current collector via a facile hydrothermal method followed by a chemical vapor deposition carbonization process.In a typical nanowire,the core is composed of interconnected MnCo_(2)O_(4)nanoparticles and the shell shows as a thin amorphous carbon layer.The integrated MnCo_(2)O_(4)@C/Cu structure could act as working anodes without using additives or polymer binders.While MnCo_(2)O_(4)@C/Cu possesses slightly longer Li-ion insertion/desertion pathway than that of MnCo_(2)O_(4)/Cu,the carbon shell could effectively prevent the pulverization of MnCo_(2)O_(4) and lower down charge transfer resistance and actively participate in Li-ion cycles.The rearrangement of carbon atoms during lithiation/delithiation cycling could inhibit the formation of passive solid electrolyte interphase films.As a result,the MnCo_(2)O_(4)@C/Cu electrode presents superior rate capacity(600 mAh·g^(−1) at 1 A·g^(−1)) and better stability(797 mAh·g^(−1) after 200 cycles at 100 mA·g^(−1)).The excellent reversible Li ion storage capacity,cycling stability and rate capacity endow MnCo_(2)O_(4)@C/Cu great potential as stable and high output integrated anode materials in Li-ion batteries. 展开更多
关键词 MnCo_(2)O_(4)@C Urchin-like nanowire arrays CORE-SHELL Integrated anode materials Lithium-ion batteries
原文传递
Three-dimensional super-resolution longitudinal magnetization spot arrays 被引量:5
3
作者 Zhong-Quan Nie Han Lin +8 位作者 Xiao-Fei Liu Ai-Ping Zhai Yan-Ting Tian Wen-Jie Wang Dong-Yu Li Wei-Qiang Ding xue-ru zhang Ying-Lin Song Bao-Hua Jia 《Light(Science & Applications)》 SCIE EI CAS CSCD 2017年第1期630-637,共8页
We demonstrate an all-optical strategy for realizing spherical three-dimensional(3D)super-resolution(∼λ3/22)spot arrays of pure longitudinal magnetization by exploiting a 4πoptical microscopic setup with two high n... We demonstrate an all-optical strategy for realizing spherical three-dimensional(3D)super-resolution(∼λ3/22)spot arrays of pure longitudinal magnetization by exploiting a 4πoptical microscopic setup with two high numerical aperture(NA)objective lenses,which focus and interfere two modulated vectorial beams.Multiple phase filters(MPFs)are designed via an analytical approach derived from the vectorial Debye diffraction theory to modulate the two circularly polarized beams.The system is tailored to constructively interfere the longitudinal magnetization components,while simultaneously destructively interfering the azimuthal ones.As a result,the magnetization field is not only purely longitudinal but also super-resolved in all three dimensions.Furthermore,the MPFs can be designed analytically to control the number and locations of the super-resolved magnetization spots to produce both uniform and nonuniform arrays in a 3D volume.Thus,an all-optical control of all the properties of light-induced magnetization spot arrays has been demonstrated for the first time.These results open up broad applications in magnetic-optical devices such as confocal and multifocal magnetic resonance microscopy,3D ultrahigh-density magneto-optic memory,and light-induced magneto-lithography. 展开更多
关键词 inverse Faraday effect longitudinal magnetization magnetic-optical devices MAGNETO-OPTICS vectorial beams vectorial Debye diffraction theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部