In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi...In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.展开更多
It is well known that ethacrynic acid (EA) can potentiate the ototoxicity of aminoglycoside antibiotics (AmAn) such as kanamycin (KM),if they were applied at the same time.Currently,to create the model of EA-KMinduced...It is well known that ethacrynic acid (EA) can potentiate the ototoxicity of aminoglycoside antibiotics (AmAn) such as kanamycin (KM),if they were applied at the same time.Currently,to create the model of EA-KMinduced cochlear lesion in rats,adult rats received a single injection of EA (75 mg/kg,intravenous injection),or followed immediately by KM (500 mg/kg,intramuscular injection).The hearing function was assessed by auditory brainstem response (ABR) measurement in response to click and/or tone bursts at 4,8,12,16,20,24,and 32 kHz.The static microcirculation status in the stria vascularis after a single EA injection was evaluated with eosin staining.The pathological changes in cochlear and vestibular hair cells were also quantified after co-administration of EA and KM.After a single EA injection,blood flow in vessels supplying the stria vascularis rapidly diminished.However,the blood supply to the cochlear lateral wall partially recovered 5 h after EA treatment.Threshold changes in ABR were basically parallel to the microcirculation changes in stria vascularis after single EA treatment.Importantly,disposable co-administration of EA and KM resulted in a permanent hearing loss and severe damage to the cochlear hair cells,but spared the vestibular hair cells.Since the cochlear lateral wall is the important part of the blood-cochlea barrier,EA-induced anoxic damage to the epithelium of stria vascularis may enhance the entry of KM to the cochlea.Thus,experimental animal model of selective cochlear damage with normal vestibular systems can be reliably created through co-administration of EA and KM.展开更多
Cell behaviors are regulated by a dynamic and complex environment characterized by biophysical,mechanical and biochemical properties.However,most works regulate cell behaviors under static conditions or by external fa...Cell behaviors are regulated by a dynamic and complex environment characterized by biophysical,mechanical and biochemical properties.However,most works regulate cell behaviors under static conditions or by external factors.To control cell adhesion and proliferation with a dynamic and mechanical environment,we pattern the surface on self-healing copolymer P(MMA/nBA).The copolymer P(MMA/nBA)with the composition of 48/52(MMA/nBA)recovers nearly 100%of its original tensile strains after 86 h of recovery from deformation.The physical patterns on P(MMA/nBA)film are obtained over large areas and the size of the hole and the width of connecting bar are in line with the copper grid specifications.The patterned surface tends to be fiat after 12 h with almost 75%-80%recovery.Compared with cell incubation on polystyrene fiat and patterned surface of P(MMA/nBA)film without self-healing capability,the number and morphology of cells are well manipulated on the patterned surface of self-healing P(MMA/nBA)film.This approach provides a convenient method for dynamically regulating the cell behaviors on the surface of self-healing materials without chemical or biological modifications.展开更多
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2012041)the Jiangsu Province Ordinary University Graduate Student Research Innovation Project(Grant No.CXZZ13_0256)
文摘In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
基金Project (No. R01 DC006630) supported by the National Institutes of Health (NIH) of USA
文摘It is well known that ethacrynic acid (EA) can potentiate the ototoxicity of aminoglycoside antibiotics (AmAn) such as kanamycin (KM),if they were applied at the same time.Currently,to create the model of EA-KMinduced cochlear lesion in rats,adult rats received a single injection of EA (75 mg/kg,intravenous injection),or followed immediately by KM (500 mg/kg,intramuscular injection).The hearing function was assessed by auditory brainstem response (ABR) measurement in response to click and/or tone bursts at 4,8,12,16,20,24,and 32 kHz.The static microcirculation status in the stria vascularis after a single EA injection was evaluated with eosin staining.The pathological changes in cochlear and vestibular hair cells were also quantified after co-administration of EA and KM.After a single EA injection,blood flow in vessels supplying the stria vascularis rapidly diminished.However,the blood supply to the cochlear lateral wall partially recovered 5 h after EA treatment.Threshold changes in ABR were basically parallel to the microcirculation changes in stria vascularis after single EA treatment.Importantly,disposable co-administration of EA and KM resulted in a permanent hearing loss and severe damage to the cochlear hair cells,but spared the vestibular hair cells.Since the cochlear lateral wall is the important part of the blood-cochlea barrier,EA-induced anoxic damage to the epithelium of stria vascularis may enhance the entry of KM to the cochlea.Thus,experimental animal model of selective cochlear damage with normal vestibular systems can be reliably created through co-administration of EA and KM.
基金This work was financially supported by the National Key Research and Development Program of China(No.2016YFC1100402)the National Natural Science Foundation of China(Nos.51973222 and 51573186)+1 种基金the Natural Science Foundation of Jilin Province of China(Nos.20180101178JC and 20190701030GH)Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,CIAC,CAS(Nos.201826 and 201715).
文摘Cell behaviors are regulated by a dynamic and complex environment characterized by biophysical,mechanical and biochemical properties.However,most works regulate cell behaviors under static conditions or by external factors.To control cell adhesion and proliferation with a dynamic and mechanical environment,we pattern the surface on self-healing copolymer P(MMA/nBA).The copolymer P(MMA/nBA)with the composition of 48/52(MMA/nBA)recovers nearly 100%of its original tensile strains after 86 h of recovery from deformation.The physical patterns on P(MMA/nBA)film are obtained over large areas and the size of the hole and the width of connecting bar are in line with the copper grid specifications.The patterned surface tends to be fiat after 12 h with almost 75%-80%recovery.Compared with cell incubation on polystyrene fiat and patterned surface of P(MMA/nBA)film without self-healing capability,the number and morphology of cells are well manipulated on the patterned surface of self-healing P(MMA/nBA)film.This approach provides a convenient method for dynamically regulating the cell behaviors on the surface of self-healing materials without chemical or biological modifications.