Hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers were synthesized by in situ polymerization. The effects of Nylon 66 contents on the copolymers were characterized by intrinsic viscosity measurements, attenu...Hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers were synthesized by in situ polymerization. The effects of Nylon 66 contents on the copolymers were characterized by intrinsic viscosity measurements, attenuated total reflection-Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. The results showed that incorporation of Nylon 66 into hydrogenated dimer acid-based Nylon had no significant effect on the glass transition or melting temperatures. However, the crystallization temperature, crystallinity degree and the maximum rate of decomposition temperature from derivative thermogravimetry measurements vary. Mechanical testing data revealed that with increasing Nylon 66 concentrations, the tensile strength of copolymers increased, while the elongation at break point and notched izod impact strength decreased. The physical and mechanical properties of HN-40, HN-50 and HN-60 are similar to those of the current PAl 1, PAl212, and PAlll 1 Nylon products.展开更多
基金the 863 program(No. 2011AA02A204) for financial support
文摘Hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers were synthesized by in situ polymerization. The effects of Nylon 66 contents on the copolymers were characterized by intrinsic viscosity measurements, attenuated total reflection-Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. The results showed that incorporation of Nylon 66 into hydrogenated dimer acid-based Nylon had no significant effect on the glass transition or melting temperatures. However, the crystallization temperature, crystallinity degree and the maximum rate of decomposition temperature from derivative thermogravimetry measurements vary. Mechanical testing data revealed that with increasing Nylon 66 concentrations, the tensile strength of copolymers increased, while the elongation at break point and notched izod impact strength decreased. The physical and mechanical properties of HN-40, HN-50 and HN-60 are similar to those of the current PAl 1, PAl212, and PAlll 1 Nylon products.