In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introduci...In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introducing p auxiliary variables. Then by exploiting structure of(LMP(H)), a linear relaxation programming(LP(H)) of(LMP(H)) is obtained with a problem(LMP) reduced to a sequence of linear programming problems. The algorithm is used to compute the lower bounds called the branch and bound search by solving linear relaxation programming problems(LP(H)). The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.展开更多
基金Supported by the PhD Start-up Fund of Natural Science Foundation of Guangdong Province,China(No.S2013040012506)China Postdoctoral Science Foundation Funded Project(2014M562152)
文摘In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introducing p auxiliary variables. Then by exploiting structure of(LMP(H)), a linear relaxation programming(LP(H)) of(LMP(H)) is obtained with a problem(LMP) reduced to a sequence of linear programming problems. The algorithm is used to compute the lower bounds called the branch and bound search by solving linear relaxation programming problems(LP(H)). The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.