Alzheimer's Disease(AD) is a chronic neurodegenerative disease that usually takes many years from preclinical phase to prodromal phase characterized by mild symptoms before the onset of dementia. Once diagnosed wi...Alzheimer's Disease(AD) is a chronic neurodegenerative disease that usually takes many years from preclinical phase to prodromal phase characterized by mild symptoms before the onset of dementia. Once diagnosed with AD, the brain is already severely damaged and the disease will process quickly to the most severe stages since there is no medications that reverse the neuronal injuries in the brain. Thus, simple, inexpensive, and widely available methods for detecting potential AD patients during their preclinical phases are urgently needed. In such case, olfactory testing may offer a chance for early diagnosis of AD. However, there are limitations in these olfactory tests due to the complexity of the brain areas it extends to and the frequently olfactory fatigue occurred in the behavioral olfactory tests. Great efforts have been done epidemiologically to investigate the correlation between olfactory functions and possibility of developing AD. Different patterns of olfactory dysfunction have been found in AD at early stages and even mild cognitive impairment(MIC), but the cause of the dysfunction remained unclear. Various kinds of AD animal models have been used in the field to clarify the existence of olfactory dysfunctions and thus study the underling mechanism of the dysfunction. In this review we discuss(1) the function of Tau physiologically and pathologically;(2) the genetic background and biological characteristics of the most commonly used Tau transgenic mice;(3) the structural and molecule basis of olfaction;(4) the possible relationship between Tau pathology and olfactory dysfunction. Finally, we suggest that the tau transgenic mouse models may be helpful in studying the possible mechanisms of the dysfunction.展开更多
文摘Alzheimer's Disease(AD) is a chronic neurodegenerative disease that usually takes many years from preclinical phase to prodromal phase characterized by mild symptoms before the onset of dementia. Once diagnosed with AD, the brain is already severely damaged and the disease will process quickly to the most severe stages since there is no medications that reverse the neuronal injuries in the brain. Thus, simple, inexpensive, and widely available methods for detecting potential AD patients during their preclinical phases are urgently needed. In such case, olfactory testing may offer a chance for early diagnosis of AD. However, there are limitations in these olfactory tests due to the complexity of the brain areas it extends to and the frequently olfactory fatigue occurred in the behavioral olfactory tests. Great efforts have been done epidemiologically to investigate the correlation between olfactory functions and possibility of developing AD. Different patterns of olfactory dysfunction have been found in AD at early stages and even mild cognitive impairment(MIC), but the cause of the dysfunction remained unclear. Various kinds of AD animal models have been used in the field to clarify the existence of olfactory dysfunctions and thus study the underling mechanism of the dysfunction. In this review we discuss(1) the function of Tau physiologically and pathologically;(2) the genetic background and biological characteristics of the most commonly used Tau transgenic mice;(3) the structural and molecule basis of olfaction;(4) the possible relationship between Tau pathology and olfactory dysfunction. Finally, we suggest that the tau transgenic mouse models may be helpful in studying the possible mechanisms of the dysfunction.