Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I...Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes.展开更多
Stitched composite materials are emerging as a promising material due to their high interlaminar strength,combined performance and light weight.The mechanical properties of stitch yarns are very essential for stitched...Stitched composite materials are emerging as a promising material due to their high interlaminar strength,combined performance and light weight.The mechanical properties of stitch yarns are very essential for stitched composite structures.In this study,the tensile behaviors of the twisted fiber yarn in stitched composites were investigated experimentally,analytically and numerically.Two kinds of cross-sectional area of twisted yarn are proposed and discussed.The paper presents an intersecting circle model to describe the cross-section of twisted fiber yarns,and a physics-based theoretical model to predict the effective tensile moduli.The numerical models take into account the cross-sectional characteristic and the twist architecture.The investigation shows that:the sum of each fiber area should be used for experimental analysis;and the crosssectional area surrounded by the yarn profile should be used for theoretical predictions and finite element(FE)simulations.The relative errors of the prediction method and the FE simulation are less than 2%and 1%,respectively.The friction between the fibers is derived,and the effect of friction on mechanical properties is discussed.The investigation method will serve as a fundamental component of twisted fiber bundle/yarn analysis.展开更多
文摘Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes.
基金co-supported by the National Natural Science Foundation of China(Nos.51772009,51911530201,51802264 and 51275023)。
文摘Stitched composite materials are emerging as a promising material due to their high interlaminar strength,combined performance and light weight.The mechanical properties of stitch yarns are very essential for stitched composite structures.In this study,the tensile behaviors of the twisted fiber yarn in stitched composites were investigated experimentally,analytically and numerically.Two kinds of cross-sectional area of twisted yarn are proposed and discussed.The paper presents an intersecting circle model to describe the cross-section of twisted fiber yarns,and a physics-based theoretical model to predict the effective tensile moduli.The numerical models take into account the cross-sectional characteristic and the twist architecture.The investigation shows that:the sum of each fiber area should be used for experimental analysis;and the crosssectional area surrounded by the yarn profile should be used for theoretical predictions and finite element(FE)simulations.The relative errors of the prediction method and the FE simulation are less than 2%and 1%,respectively.The friction between the fibers is derived,and the effect of friction on mechanical properties is discussed.The investigation method will serve as a fundamental component of twisted fiber bundle/yarn analysis.