By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the ...By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.展开更多
Zero-tillage has become increasingly attractive in rice production in China.This study was conducted to determine the feasibility of two possible improved N management practices with fewer N applications in zero-tilla...Zero-tillage has become increasingly attractive in rice production in China.This study was conducted to determine the feasibility of two possible improved N management practices with fewer N applications in zero-tillage rice:(1)two split applications of urea at75 kg N ha^(-1)at mid-tillering and 45 kg N ha^(-1)at panicle initiation(U_(120–2)),and(2)a single application of cross-linked polyacrylamide-coated urea(a slow-release fertilizer)at midtillering at a rate of 150 kg N ha^(-1)(PCU_(150–1)).Three field experiments were conducted to compare grain yield and N-use efficiency among several N treatments:a zero-N control(CK),U_(120–2),PCU_(150–1),a single application of urea at mid-tillering at a rate of 150 kg N ha^(-1)(U_(150–1)),and a commonly recommended N management practice for conventional tillage rice(three split applications of urea with 75 kg N ha^(-1)as basal,30 kg N ha^(-1)at mid-tillering,and 45 kg N ha^(-1)at panicle initiation)(U_(150–3)).Treatments with N application(U_(120–2),PCU_(150–1),U_(150–1),and U_(150–3))produced 1.08–3.16 t ha^(-1)higher grain yields than CK.Grain yields under both U_(120–2)and PCU_(150–1)were comparable to that in U_(150–3).Recovery efficiency of N(RE_N),agronomic N-use efficiency(AE_N)and partial factor productivity of applied N(PFP_N)were increased under U_(120–2)and were similar under PCU_(150–1)to those under U_(150–3).U_(150–1)showed lower grain yield,RE_N,AE_N,and PFP_Nthan U_(150–3).These results suggest that U_(150–3)can be replaced with U_(120–2)to achieve both an increase in N-use efficiency and a reduction in number of N applications and or by PCU_(150–1)to achieve a maximum reduction in number of N applications in zero-tillage rice production in China.展开更多
2D MXene(Ti_(3)CNT_(x))has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity,ultra-high capacitance,and excellent flexibility.However,it suffers f...2D MXene(Ti_(3)CNT_(x))has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity,ultra-high capacitance,and excellent flexibility.However,it suffers from a severe restacking problem during the electrode fabrication process,limiting the ion transport kinetics and the accessibility of ions in the electrodes,especially in the direction normal to the electrode surface.Herein,we report a NH_(3)-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots(p-MC)films for high-performance flexible supercapacitor.The pre-intercalated carbon dots(CDs)first prevent the restacking of MXene to expose more inner electrochemical active sites.The partially decomposed CDs generate NH_(3)for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films.Benefiting from the structural merits and the 3D-interconnected ionic transmission channels,p-MC film electrodes achieve excellent gravimetric capacitance(688.9 F g^(-1)at 2 A g^(-1))and superior rate capability.Moreover,the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability,demonstrating the great promise of p-MC electrode for practical applications.展开更多
Perovskite-type lithium lanthanum titanates(LLTO)display a high bulk ionic conductivity and are considered a promising electrolyte for building up to advanced solid-state Li-ion batteries.The LLTO crystals contain a h...Perovskite-type lithium lanthanum titanates(LLTO)display a high bulk ionic conductivity and are considered a promising electrolyte for building up to advanced solid-state Li-ion batteries.The LLTO crystals contain a high concentration of intrinsically formed 90ο-rotated domain boundaries(DBs)serving as barriers to bulk Li-ion conduction.However,the mechanism of how the DB concentration and DB resistance can compete with each other to determine the bulk conductivity of LLTO is still unknown.Here we report a comprehensive study of LLTO compounds,aimed to unravel the mechanism and hence explore new path(s)for further improving the conductivity of this material.Our results show that both the sintering temperature and chemical composition can affect significantly the domain structures in LLTO.It is found that a decrease in the DB concentration is always accompanied by increased DB resistance due to the increased lattice mismatch at DBs,and vice versa.By unifying the electrochemical impedance spectroscopy and transmission electron microscopy analysis,it is clearly shown that the high DB resistance,instead of DB concentration,acts as the dominant factor governing the bulk conductivity of LLTO.The results thus renew the conventional understanding of the bulk Li-ion conduction in LLTO and shed light on developing novel LLTO electrolyte materials with improved ionic conductivity.展开更多
Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichio...Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichiometry on the crystal surface differs from that on the crystal interior in LNMO.The detection of local oxygen loss in LNMO and its correlation with the crystal structure and the cycling stability of LNMO remain challenging.In this study,the effect of oxygen deficiency in LNMO controlled by sintering temperature on the surface crystal structure and electrochemical performance of LNMO is comprehensively investigated.The high concentration of oxygen vacancies segregates at the surface regions of LNMO forming a thin rock‐salt and/or deficient spinel surface layer.The atomic‐level surface structure reconstruction was demonstrated by annular dark‐field and annular brightfield techniques.For the synthesis of LNMO,the higher sintering temperature results in higher crystallinity but the higher oxygen deficiency in LNMO.The high crystallinity of LNMO would increase the thermal stability of LNMO cathodes while the high content of oxygen deficiency would decrease the surface structural stability of LNMO.Therefore,the LNMO sintered at a medium temperature of 850°C achieved the best capacity retention.The results suggest a competitive function mechanism between oxygen stoichiometry and the crystallinity of LNMO on the cycling performance of LNMO.展开更多
The spin-1/2 kagome antiferromagnets are key prototype materials for studying frustrated magnetism.Three isostructural kagome antiferromagnets LnCu_(3)(OH)_(6)Cl_(3)(Ln=Gd,Tb,Dy)have been successfully synthesized by t...The spin-1/2 kagome antiferromagnets are key prototype materials for studying frustrated magnetism.Three isostructural kagome antiferromagnets LnCu_(3)(OH)_(6)Cl_(3)(Ln=Gd,Tb,Dy)have been successfully synthesized by the hydrothermal method.LnCu_(3)(OH)_(6)Cl_(3) adopts space group P3m1 and features the layered Cu-kagome lattice with lanthanide Ln3+cations sitting at the center of the hexagons.Although heavy lanthanides(Ln=Gd,Tb,Dy)in LnCu_(3)(OH)_(6)Cl_(3) provide a large effective magnetic moment and ferromagnetic-like spin correlations compared to light-lanthanides(Nd,Sm,Eu)analogues,Cu-kagome holds an antiferromagnetically ordered state at around 17 K like YCu_(3)(OH)_(6)Cl_(3).展开更多
Classical molecular dynamics simulation has been widely used to study the rapid cooling process of preparing amorphous alloys.However,the simulated cooling rate is several orders of magnitude higher than the experimen...Classical molecular dynamics simulation has been widely used to study the rapid cooling process of preparing amorphous alloys.However,the simulated cooling rate is several orders of magnitude higher than the experimental cooling rate.In this paper,Zr_(55)Cu_(35)Al_(10)alloy was taken as an example.It is found that adding isothermal annealing at a temperature slightly lower than Tand prolonging isothermal annealing time could effectively reduce the cooling rate.The glassy sample prepared in this way demonstrates significant energetic stability and well-developed short-range and medium-range order.展开更多
Classical molecular dynamics(MD)were conducted to study the structure and energy distribution of Zr_(x)Cu_(90-x)Al_(10)(x=20,30,40,50,60,70)ternary alloys.When the Zr composition is 30%,the glass transition temperatur...Classical molecular dynamics(MD)were conducted to study the structure and energy distribution of Zr_(x)Cu_(90-x)Al_(10)(x=20,30,40,50,60,70)ternary alloys.When the Zr composition is 30%,the glass transition temperature reaches the maximum value and the Zr_(30)Cu_(60)Al_(10)owns high glass forming ability(GFA).Analysis of the short⁃range structure shows that there are more low⁃energy Zr⁃centered polyhedron with high coordination number(CN)and Cu and Al⁃centered coordination polyhedron with CN=12 in Zr_(30)Cu_(60_Al_(10)alloy.As the medium⁃range structure is concerned,Zr_(30)Cu_(60_Al_(10)alloy has the largest number of coordination polyhedron connection sharing three atoms and connection in this way presenting the lowest energy.These low⁃energy and stable short and medium⁃range structures contribute to the high GFA of Zr_(30)Cu_(60_Al_(10).展开更多
Insufficient therapeutic strategies for acute kidney injury(AKI)necessitate precision therapy targeting its pathogenesis.This study reveals the new mechanism of the marine-derived anti-AKI agent,piericidin glycoside S...Insufficient therapeutic strategies for acute kidney injury(AKI)necessitate precision therapy targeting its pathogenesis.This study reveals the new mechanism of the marine-derived anti-AKI agent,piericidin glycoside S14,targeting peroxiredoxin 1(PRDX1).By binding to Cys83 of PRDX1 and augmenting its peroxidase activity,S14 alleviates kidney injury efficiently in Prdx1-overexpression(Prdx1-OE)mice.Besides,S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production.Due to the limited druggability of S14 with low bioavailability(2.6%)and poor renal distribution,a pH-sensitive kidney-targeting dodecanaminechitosan nanoparticle system is constructed to load S14 for precise treatment of AKI.L-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1(Kim-1)-overexpressed cells.The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly.By encapsulation with micelles,the AUC_(0-t),half-life time,and renal distribution of S14 increase 2.5-,1.8-,and 3.1-fold,respectively.The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDPglycosyltransferase(UGT)-mediated biotransformation.In summary,this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology,thereby driving advancements in marine drug development for AKI.展开更多
Lanthanum lithium titanate is one of the promising electrolytes for solid-state lithium-ion batteries due to its high bulk ionic conductivity up to∼10^(−3) S/cm.However,the practical application of this material has ...Lanthanum lithium titanate is one of the promising electrolytes for solid-state lithium-ion batteries due to its high bulk ionic conductivity up to∼10^(−3) S/cm.However,the practical application of this material has been bottlenecked by high grain boundary(GB)resistance,while the underlying mechanism is still under debate.Here we report a comprehensive study with direct evidence to reveal the origin of high GB resistance in La_(2/3)–xLi_(3x)TiO_(3)(LLTO).Atomic-scale observations via advanced scanning transmission electron microscopy show that the GBs are uniformly subject to subsurface segregation of La atoms to compensate for the excess surface charges.The La segregation leads to an abrupt decrease of charge carrier concentration neighboring GBs and hence is supposed to have deleterious effect on GB conductivity.The findings suggest a novel mechanism of space-charge-induced cation segregation,which shed lights on the intrinsic origin of low GB ionic conductivity in LLTO.展开更多
Selenium cathode has been demonstrated as a promising candidate of cathode material for low-cost and high-energy density potassium ion batteries(PIBs).Nevertheless,their applica tions are prevented by poor electrochem...Selenium cathode has been demonstrated as a promising candidate of cathode material for low-cost and high-energy density potassium ion batteries(PIBs).Nevertheless,their applica tions are prevented by poor electrochemical perfor-mance due to the shuttle effect of high-order polyselenides,the sluggish diffu-sion of bigger K+,and the huge volumetric expansion during cycling.In this work,we design a multifunctional Se host(N-HCNS)by grafting ZIF-8 derived microporous carbon onto the surface of N-doped porous carbon nanosheets.The obtained N-HCNS carbon matrix integrates conductivity,captivity,and immobility abilities,which inhibits the polyselenides shuttle,improves the Se utilization,and buffers the volume change during cycling.The 3D hollow car-bon skeleton enhances the infiltration of electrolytes.As an cathode for PIBs,the Se@N-HCNS electrode delivers an unprecedented life-span(260 mAh g1 at 1.0 Ag-1 after 2000 cycles)and exhibits a remarkable rate capacity(339 mAh g at 5.0 Ag-l).Density functional theory(DFT)calculation reveals the effective adsorption of K2Se with pyridine and pyrrole nitrogen dop-ing in carbon matrix.The unique synergetic design of electrode not only gives insight into the reaction mechanism but also highly emphasi zes the potential capabilities of N doped carbon in K-Se batteries.展开更多
Natural products derived from marine microorganisms have been received great attention as a potential source of new compound entities for drug discovery.The unique marine environment brings us a large group of halogen...Natural products derived from marine microorganisms have been received great attention as a potential source of new compound entities for drug discovery.The unique marine environment brings us a large group of halogen-containing natural products with abundant biological functionality and good drugability.Meanwhile,biosynthetically halogenated reactions are known as a significant strategy used to increase the pharmacological activities and pharmacokinetic properties of compounds.Given that a tremendous increase in the number of new halogenated compounds from marine microorganisms in the last five years,it is necessary to summarize these compounds with their diverse structures and promising bioactivities.In this review,we have summarized the chemistry,biosynthesis(related halogenases),and biological activity of a total of 316 naturally halogenated compounds from marine microorganisms covering the period of 2015 to May 2021.Those reviewed chlorinated and brominated compounds with the ratio of 9:1 were predominantly originated from 36 genera of fungi(62%)and 9 bacterial strains(38%)with cytotoxic,antibacterial,and enzyme inhibitory activities,structural types of which are polyketides(38%),alkaloids(27%),phenols(11%),and others.This review would provide a plenty variety of promising lead halogenated compounds for drug discovery and inspire the development of new pharmaceutical agents.展开更多
Background:Tuberculosis(TB)remains a major threat to human health,and TB diagnostic methods remain unsatisfactory.Nucleic acid amplification tests(NAATs)show higher sensitivity compared with culture for the diagnosis ...Background:Tuberculosis(TB)remains a major threat to human health,and TB diagnostic methods remain unsatisfactory.Nucleic acid amplification tests(NAATs)show higher sensitivity compared with culture for the diagnosis of pulmonary TB(PTB).However,NAATs are expensive and cannot be easily implemented outside major medical centers.To improve the sensitivity of NAATs for PTB diagnosis,we investigated the predictive factors that might optimize NAAT utilization.Methods:A total of 1263 patients with suspected PTB were enrolled for evaluation.The sensitivity,specificity,and accuracy of methods including smear-microbiology,culture of Mtb and NAAT for Mycobacterium tuberculosis(Mtb)detection in sputum and bronchoalveolar lavage fluid samples were compared.Odds ratios and 95%confidence intervals were used to assess variables that might be associated with positive NAAT results for sputum and bronchoalveolar lavage fluid from patients with suspected PTB.Results:NAAT showed higher sensitivity for Mtb detection(61.1%)when compared with smear(9.0%)and Mtb culture(47.8%).We found that an elevated erythrocyte sedimentation rate,the presence of cavities,and positive interferon-𝛾release assay(IGRA)results were indicative of positive Mtb detection by NAAT.Moreover,individuals who had all three of these characteristics showed an 86%diagnostic positivity for PTB from Mtb detection by NAAT.Conclusions:Our study suggests that an elevated erythrocyte sedimentation rate,a positive IGRA result,and the presence of pulmonary cavities are helpful factors for predicting positive Mtb detection by NAAT.Patients with the three positive clinical markers should undergo NAAT for Mtb detection because they are the most likely individuals to be bacteriologically confirmed as having TB.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1402203)the National Natural Science Foundation of China(Grant No.12174065)supported by the Shenzhen Fundamental Research Program(Grant Nos.JCYJ20220818100405013 and JCYJ20230807093204010)。
文摘By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.
基金supported by the National Natural Science Foundation of China(31301267)the China Agriculture Research System(CARS-01)
文摘Zero-tillage has become increasingly attractive in rice production in China.This study was conducted to determine the feasibility of two possible improved N management practices with fewer N applications in zero-tillage rice:(1)two split applications of urea at75 kg N ha^(-1)at mid-tillering and 45 kg N ha^(-1)at panicle initiation(U_(120–2)),and(2)a single application of cross-linked polyacrylamide-coated urea(a slow-release fertilizer)at midtillering at a rate of 150 kg N ha^(-1)(PCU_(150–1)).Three field experiments were conducted to compare grain yield and N-use efficiency among several N treatments:a zero-N control(CK),U_(120–2),PCU_(150–1),a single application of urea at mid-tillering at a rate of 150 kg N ha^(-1)(U_(150–1)),and a commonly recommended N management practice for conventional tillage rice(three split applications of urea with 75 kg N ha^(-1)as basal,30 kg N ha^(-1)at mid-tillering,and 45 kg N ha^(-1)at panicle initiation)(U_(150–3)).Treatments with N application(U_(120–2),PCU_(150–1),U_(150–1),and U_(150–3))produced 1.08–3.16 t ha^(-1)higher grain yields than CK.Grain yields under both U_(120–2)and PCU_(150–1)were comparable to that in U_(150–3).Recovery efficiency of N(RE_N),agronomic N-use efficiency(AE_N)and partial factor productivity of applied N(PFP_N)were increased under U_(120–2)and were similar under PCU_(150–1)to those under U_(150–3).U_(150–1)showed lower grain yield,RE_N,AE_N,and PFP_Nthan U_(150–3).These results suggest that U_(150–3)can be replaced with U_(120–2)to achieve both an increase in N-use efficiency and a reduction in number of N applications and or by PCU_(150–1)to achieve a maximum reduction in number of N applications in zero-tillage rice production in China.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.21805261 and 51972277)Sichuan Science and Technology Program(Grant Nos.2021YFG0251 and 2022YFG0293)Fundamental Research Funds for the Central Universities(Grant No.2682021CX105)。
文摘2D MXene(Ti_(3)CNT_(x))has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity,ultra-high capacitance,and excellent flexibility.However,it suffers from a severe restacking problem during the electrode fabrication process,limiting the ion transport kinetics and the accessibility of ions in the electrodes,especially in the direction normal to the electrode surface.Herein,we report a NH_(3)-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots(p-MC)films for high-performance flexible supercapacitor.The pre-intercalated carbon dots(CDs)first prevent the restacking of MXene to expose more inner electrochemical active sites.The partially decomposed CDs generate NH_(3)for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films.Benefiting from the structural merits and the 3D-interconnected ionic transmission channels,p-MC film electrodes achieve excellent gravimetric capacitance(688.9 F g^(-1)at 2 A g^(-1))and superior rate capability.Moreover,the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability,demonstrating the great promise of p-MC electrode for practical applications.
基金supported by the National Natural Science Foundation of China(22075003,U2030206)。
文摘Perovskite-type lithium lanthanum titanates(LLTO)display a high bulk ionic conductivity and are considered a promising electrolyte for building up to advanced solid-state Li-ion batteries.The LLTO crystals contain a high concentration of intrinsically formed 90ο-rotated domain boundaries(DBs)serving as barriers to bulk Li-ion conduction.However,the mechanism of how the DB concentration and DB resistance can compete with each other to determine the bulk conductivity of LLTO is still unknown.Here we report a comprehensive study of LLTO compounds,aimed to unravel the mechanism and hence explore new path(s)for further improving the conductivity of this material.Our results show that both the sintering temperature and chemical composition can affect significantly the domain structures in LLTO.It is found that a decrease in the DB concentration is always accompanied by increased DB resistance due to the increased lattice mismatch at DBs,and vice versa.By unifying the electrochemical impedance spectroscopy and transmission electron microscopy analysis,it is clearly shown that the high DB resistance,instead of DB concentration,acts as the dominant factor governing the bulk conductivity of LLTO.The results thus renew the conventional understanding of the bulk Li-ion conduction in LLTO and shed light on developing novel LLTO electrolyte materials with improved ionic conductivity.
基金financial support the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the National Natural Science Foundation of China(11704239,61922053,and 11674210)。
基金National Natural Science Foundation of China,Grant/Award Numbers:22075003,22090043,U1930401,U2030206。
文摘Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichiometry on the crystal surface differs from that on the crystal interior in LNMO.The detection of local oxygen loss in LNMO and its correlation with the crystal structure and the cycling stability of LNMO remain challenging.In this study,the effect of oxygen deficiency in LNMO controlled by sintering temperature on the surface crystal structure and electrochemical performance of LNMO is comprehensively investigated.The high concentration of oxygen vacancies segregates at the surface regions of LNMO forming a thin rock‐salt and/or deficient spinel surface layer.The atomic‐level surface structure reconstruction was demonstrated by annular dark‐field and annular brightfield techniques.For the synthesis of LNMO,the higher sintering temperature results in higher crystallinity but the higher oxygen deficiency in LNMO.The high crystallinity of LNMO would increase the thermal stability of LNMO cathodes while the high content of oxygen deficiency would decrease the surface structural stability of LNMO.Therefore,the LNMO sintered at a medium temperature of 850°C achieved the best capacity retention.The results suggest a competitive function mechanism between oxygen stoichiometry and the crystallinity of LNMO on the cycling performance of LNMO.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07C062)Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices (Grant No. ZDSYS20190902092905285)+4 种基金Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515120100)the support of China Postdoctoral Science Foundation (Grant No. 2020M682780)the financial supports from Science and Technology Development Fund, Macao SAR, China (File No. 0051/2019/AFJ)Guangdong Basic and Applied Basic Research Foundation (Guangdong-Dongguan Joint Fund No. 2020B1515120025)Guangdong–Hong Kong–Macao Joint Laboratory for Neutron Scattering Science and Technology, China (Grant No. 2019B121205003)
文摘The spin-1/2 kagome antiferromagnets are key prototype materials for studying frustrated magnetism.Three isostructural kagome antiferromagnets LnCu_(3)(OH)_(6)Cl_(3)(Ln=Gd,Tb,Dy)have been successfully synthesized by the hydrothermal method.LnCu_(3)(OH)_(6)Cl_(3) adopts space group P3m1 and features the layered Cu-kagome lattice with lanthanide Ln3+cations sitting at the center of the hexagons.Although heavy lanthanides(Ln=Gd,Tb,Dy)in LnCu_(3)(OH)_(6)Cl_(3) provide a large effective magnetic moment and ferromagnetic-like spin correlations compared to light-lanthanides(Nd,Sm,Eu)analogues,Cu-kagome holds an antiferromagnetically ordered state at around 17 K like YCu_(3)(OH)_(6)Cl_(3).
文摘Classical molecular dynamics simulation has been widely used to study the rapid cooling process of preparing amorphous alloys.However,the simulated cooling rate is several orders of magnitude higher than the experimental cooling rate.In this paper,Zr_(55)Cu_(35)Al_(10)alloy was taken as an example.It is found that adding isothermal annealing at a temperature slightly lower than Tand prolonging isothermal annealing time could effectively reduce the cooling rate.The glassy sample prepared in this way demonstrates significant energetic stability and well-developed short-range and medium-range order.
文摘Classical molecular dynamics(MD)were conducted to study the structure and energy distribution of Zr_(x)Cu_(90-x)Al_(10)(x=20,30,40,50,60,70)ternary alloys.When the Zr composition is 30%,the glass transition temperature reaches the maximum value and the Zr_(30)Cu_(60)Al_(10)owns high glass forming ability(GFA).Analysis of the short⁃range structure shows that there are more low⁃energy Zr⁃centered polyhedron with high coordination number(CN)and Cu and Al⁃centered coordination polyhedron with CN=12 in Zr_(30)Cu_(60_Al_(10)alloy.As the medium⁃range structure is concerned,Zr_(30)Cu_(60_Al_(10)alloy has the largest number of coordination polyhedron connection sharing three atoms and connection in this way presenting the lowest energy.These low⁃energy and stable short and medium⁃range structures contribute to the high GFA of Zr_(30)Cu_(60_Al_(10).
基金supported by the Guangdong Local Innovation Team Program(2019BT02Y262,China)National Natural Science Foundation of China(U20A20101,82274002,22175083)+2 种基金Key-Area Research and Development Program of Guangdong Province(2023B1111050008,China)National Key Research and Development Program of China(2022YFA1206900,2023YFA0914200)Science and Technology Innovation Project of Guangdong Medical Products Administration(S2021ZDZ042,2023ZDZ06,2024ZDZ08,China).
文摘Insufficient therapeutic strategies for acute kidney injury(AKI)necessitate precision therapy targeting its pathogenesis.This study reveals the new mechanism of the marine-derived anti-AKI agent,piericidin glycoside S14,targeting peroxiredoxin 1(PRDX1).By binding to Cys83 of PRDX1 and augmenting its peroxidase activity,S14 alleviates kidney injury efficiently in Prdx1-overexpression(Prdx1-OE)mice.Besides,S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production.Due to the limited druggability of S14 with low bioavailability(2.6%)and poor renal distribution,a pH-sensitive kidney-targeting dodecanaminechitosan nanoparticle system is constructed to load S14 for precise treatment of AKI.L-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1(Kim-1)-overexpressed cells.The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly.By encapsulation with micelles,the AUC_(0-t),half-life time,and renal distribution of S14 increase 2.5-,1.8-,and 3.1-fold,respectively.The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDPglycosyltransferase(UGT)-mediated biotransformation.In summary,this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology,thereby driving advancements in marine drug development for AKI.
基金This work was supported by the National Natural Science Foundation of China(U2030206,22075003).
文摘Lanthanum lithium titanate is one of the promising electrolytes for solid-state lithium-ion batteries due to its high bulk ionic conductivity up to∼10^(−3) S/cm.However,the practical application of this material has been bottlenecked by high grain boundary(GB)resistance,while the underlying mechanism is still under debate.Here we report a comprehensive study with direct evidence to reveal the origin of high GB resistance in La_(2/3)–xLi_(3x)TiO_(3)(LLTO).Atomic-scale observations via advanced scanning transmission electron microscopy show that the GBs are uniformly subject to subsurface segregation of La atoms to compensate for the excess surface charges.The La segregation leads to an abrupt decrease of charge carrier concentration neighboring GBs and hence is supposed to have deleterious effect on GB conductivity.The findings suggest a novel mechanism of space-charge-induced cation segregation,which shed lights on the intrinsic origin of low GB ionic conductivity in LLTO.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M682031National Postdoctoral Program for Innovative Talents,Grant/Award Number:BX20200318+3 种基金National Synchrotron Radiation Laboratory,Grant/Award Num ber.KY2060000173Fundamental Research Funds for Central Universities,Grant/Award Number:WK 2060140026Dalian National Laboratory(DNL)Cooperation Fund for Clean Energy,Grant/Award Num ber:DNL 180310National Natural Science Foundation of China,Grant/Award Numbers:51972067,52002083,5187277,51925207,U1910210。
文摘Selenium cathode has been demonstrated as a promising candidate of cathode material for low-cost and high-energy density potassium ion batteries(PIBs).Nevertheless,their applica tions are prevented by poor electrochemical perfor-mance due to the shuttle effect of high-order polyselenides,the sluggish diffu-sion of bigger K+,and the huge volumetric expansion during cycling.In this work,we design a multifunctional Se host(N-HCNS)by grafting ZIF-8 derived microporous carbon onto the surface of N-doped porous carbon nanosheets.The obtained N-HCNS carbon matrix integrates conductivity,captivity,and immobility abilities,which inhibits the polyselenides shuttle,improves the Se utilization,and buffers the volume change during cycling.The 3D hollow car-bon skeleton enhances the infiltration of electrolytes.As an cathode for PIBs,the Se@N-HCNS electrode delivers an unprecedented life-span(260 mAh g1 at 1.0 Ag-1 after 2000 cycles)and exhibits a remarkable rate capacity(339 mAh g at 5.0 Ag-l).Density functional theory(DFT)calculation reveals the effective adsorption of K2Se with pyridine and pyrrole nitrogen dop-ing in carbon matrix.The unique synergetic design of electrode not only gives insight into the reaction mechanism but also highly emphasi zes the potential capabilities of N doped carbon in K-Se batteries.
基金financially supported by the Natural Science Foundation of Guangxi Province(Nos.2020GXNSFGA297002,2021GXNSFDA075010,2020GXNSFBA159001)the Special Fund for Bagui Scholars of Guangxi Province(Y.Liu),the National Natural Science Foundation of China(Nos.22007019,U20A20101)+1 种基金the Specific Research Project of Guangxi for Research Bases and Talents(AD20297003)the Open Project of CAS Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB20211005).
文摘Natural products derived from marine microorganisms have been received great attention as a potential source of new compound entities for drug discovery.The unique marine environment brings us a large group of halogen-containing natural products with abundant biological functionality and good drugability.Meanwhile,biosynthetically halogenated reactions are known as a significant strategy used to increase the pharmacological activities and pharmacokinetic properties of compounds.Given that a tremendous increase in the number of new halogenated compounds from marine microorganisms in the last five years,it is necessary to summarize these compounds with their diverse structures and promising bioactivities.In this review,we have summarized the chemistry,biosynthesis(related halogenases),and biological activity of a total of 316 naturally halogenated compounds from marine microorganisms covering the period of 2015 to May 2021.Those reviewed chlorinated and brominated compounds with the ratio of 9:1 were predominantly originated from 36 genera of fungi(62%)and 9 bacterial strains(38%)with cytotoxic,antibacterial,and enzyme inhibitory activities,structural types of which are polyketides(38%),alkaloids(27%),phenols(11%),and others.This review would provide a plenty variety of promising lead halogenated compounds for drug discovery and inspire the development of new pharmaceutical agents.
基金This work was supported by the Natural Science Foundation of China(No.81,873,958,81,802,058)the National Key Research and Development Plan(No.2019YFC0840602,2020YFA0907201)+2 种基金the Guang-dong Scientific and Technological Foundation(No.2019B1515120041,2020B1111170014)the Shen-zhen Scientific and Technological Foundation(No.JCYJ20180228162336873,JCYJ20180228162321234,KCXFZ202002011007083)the China Postdoctoral Science Foundation(No.2020M670085ZX).
文摘Background:Tuberculosis(TB)remains a major threat to human health,and TB diagnostic methods remain unsatisfactory.Nucleic acid amplification tests(NAATs)show higher sensitivity compared with culture for the diagnosis of pulmonary TB(PTB).However,NAATs are expensive and cannot be easily implemented outside major medical centers.To improve the sensitivity of NAATs for PTB diagnosis,we investigated the predictive factors that might optimize NAAT utilization.Methods:A total of 1263 patients with suspected PTB were enrolled for evaluation.The sensitivity,specificity,and accuracy of methods including smear-microbiology,culture of Mtb and NAAT for Mycobacterium tuberculosis(Mtb)detection in sputum and bronchoalveolar lavage fluid samples were compared.Odds ratios and 95%confidence intervals were used to assess variables that might be associated with positive NAAT results for sputum and bronchoalveolar lavage fluid from patients with suspected PTB.Results:NAAT showed higher sensitivity for Mtb detection(61.1%)when compared with smear(9.0%)and Mtb culture(47.8%).We found that an elevated erythrocyte sedimentation rate,the presence of cavities,and positive interferon-𝛾release assay(IGRA)results were indicative of positive Mtb detection by NAAT.Moreover,individuals who had all three of these characteristics showed an 86%diagnostic positivity for PTB from Mtb detection by NAAT.Conclusions:Our study suggests that an elevated erythrocyte sedimentation rate,a positive IGRA result,and the presence of pulmonary cavities are helpful factors for predicting positive Mtb detection by NAAT.Patients with the three positive clinical markers should undergo NAAT for Mtb detection because they are the most likely individuals to be bacteriologically confirmed as having TB.