Converting CO_(2)to valuable materials is attractive in environmental protection and resource utilization.In this study,a vapor-liquid interface reaction system for mass production of high-quality graphene is reported...Converting CO_(2)to valuable materials is attractive in environmental protection and resource utilization.In this study,a vapor-liquid interface reaction system for mass production of high-quality graphene is reported.The graphene obtained has high crystallinity and few defects during the reaction of CO_(2)and Mg melt.The growth mechanism of graphene is demonstrated in vapor-liquid interface area by combining the CO_(2)bubbles as a soft template to guide growth with the confinement effect of dense MgO nanoparticles.The quality of the graphene is verified by epoxy composites with high electromagnetic shielding effectiveness.Additionally,the V-L reaction method ingeniously solves the dispersion of graphene in metal,providing a preparation strategy of Mg matrix composites with structure and function integration.展开更多
Bamboo forest is an important forest type in subtropical China and is characterized by fast growth and high carbon sequestration capacity. However, the dynamics of carbon fluxes during the fast growing period of bambo...Bamboo forest is an important forest type in subtropical China and is characterized by fast growth and high carbon sequestration capacity. However, the dynamics of carbon fluxes during the fast growing period of bamboo shoots and their correlation with environment factors are poorly understood. We measured carbon dioxide exchange and climate variables using open-path eddy covariance methods during the 2011 growing season in a Moso bamboo forest(MB, Phyllostchys edulis) and a Lei bamboo forest(LB, Phyllostachys violascens) in Zhejiang province,China. The bamboo forests were carbon sinks during the growing season. The minimum diurnal net ecosystem exchange(NEE) at MB and LB sites were-0.64 and-0.66 mg C m^(-2) s^(-1), respectively. The minimum monthly NEE, ecosystem respiration(RE), and gross ecosystem exchange(GEE) were-99.3 ± 4.03, 76.2 ±2.46, and^(-1)91.5 ± 4.98 g C m^(-2) month^(-1), respectively,at MB site, compared with-31.8 ± 3.44, 70.4 ± 1.41,and^(-1)57.9 ± 4.86 g C m^(-2) month^(-1), respectively, at LB site. Maximum RE was 92.1 ± 1.32 g C m^(-2) month^(-1) at MB site and 151.0 ± 2.38 g C m^(-2) month^(-1) at LB site.Key control factors varied by month during the growing season, but across the whole growing season, NEE and GEE at both sites showed similar trends in sensitivities to photosynthetic active radiation and vapor pressure deficit,and air temperature had the strongest correlation with RE at both sites. Carbon fluxes at LB site were more sensitive to soil water content compared to those at MB site. Both onyear(years when many new shoots are produced) and offyear(years when none or few new shoots are produced)should be studied in bamboo forests to better understand their role in global carbon cycling.展开更多
[Objectives] This study was conducted to isolate and screen the bacteria that can convert trans-anethole to anisic acid from star anise and its environmental samples, and identify the bacteria. [Methods] According to ...[Objectives] This study was conducted to isolate and screen the bacteria that can convert trans-anethole to anisic acid from star anise and its environmental samples, and identify the bacteria. [Methods] According to the traditional microbial culture method, with trans-anethole as the sole carbon source, through enrichment culture and separation and purification, preliminary screening by thin layer chromatography and re-screening by high-performance liquid chromatography, strains that degraded trans-anethole to produce anisic acid were obtained, and 16 S rDNA sequencing and phylogenetic tree construction were performed for genetic analysis. [Results] Eleven strains that degraded trans-anethole to produce anisic acid were obtained, among which strain NT2 that produced anisic acid with a relatively high efficiency was initially identified as Pseudomonas sp. The strain’s trans-anethole degradation rate was 45.41%, and the molar production rate and cumulative concentration of anisic acid were 21.80% and 1.96 g/L, respectively. [Conclusions] Strain NT2 has a strong ability to degrade trans-anethole to produce anisic acid, and can enrich strain resources for degradation of trans-anethole to anisic acid through microbial conversion.展开更多
Graphene reinforced magnesium matrix composites have wide applications in automotive,electronics,aerospace and military fields due to the fascinating mechanical properties.However,it is difficult to realize the high s...Graphene reinforced magnesium matrix composites have wide applications in automotive,electronics,aerospace and military fields due to the fascinating mechanical properties.However,it is difficult to realize the high strength and ductility simultaneously.In this work,the in situ liquid-state method was utilized to prepare GNPs/Mg6Zn composites via CO_(2)/Mg chemical reaction.Tensile strength of the GNPs/Mg6Zn composites was improved with increasing content of the GNPs.Meantime,the composites also exhibit a notable plastic deformation stage,and especially the ductility of 0.12 GNPs/Mg6Zn composites reaches 27.6%.Therefore,this novel preparation method has great potential application for fabricating Mg matrix composites with high strength and high ductility.展开更多
为了解阿勒泰地区额尔齐斯河和乌伦古河流域的鱼类多样性现状和历史演变,本研究于2013–2016年间在该流域的鱼类多样性进行了连续调查,并结合历史资料和标本,以Margalef丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数分析评...为了解阿勒泰地区额尔齐斯河和乌伦古河流域的鱼类多样性现状和历史演变,本研究于2013–2016年间在该流域的鱼类多样性进行了连续调查,并结合历史资料和标本,以Margalef丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数分析评估了流域内鱼类的多样性水平和时空变化。该流域历史上分布有土著鱼类23种,当前记录到19种,流域内还有外来鱼类15种。阿勒泰鱼类的区系组成以鲤科种类为主,其中特有和珍稀濒危物种占比高,具有重要的保护价值。多样性指数计算结果显示,2013–2016年鱼类多样性情况整体稳定,额尔齐斯河鱼类物种数多于乌伦古河。研究还基于鱼类生物完整性指数(Fish Index of Biological Integrity,F-IBI)对34个采集点的河流健康状况进行了评价,结果显示额尔齐斯河流域大多数调查点的健康状况处于"亚健康"或"一般"水平,乌伦古河流域多数调查点的健康状况处于"健康"水平。水利工程、外来物种、过度捕捞是影响阿勒泰地区鱼类多样性的重要因素。未来应通过水利工程的联合调度、下泄合理生态流量、布设鱼类通道、规范养殖渔业、严控外来物种、本地土著鱼类的人工增殖放流,以及合理的就地保护措施对阿勒泰地区的鱼类多样性加以保护,提升水体健康程度。展开更多
基金supported by“National Natural Science Foundation of China”(Grant Nos.51971078,51871074 and 51671066)“The Project National United Engineering Laboratory for Advanced Bearing Tribology,Henan Univer-sity of Science and Technology”(Grant No.201911).
文摘Converting CO_(2)to valuable materials is attractive in environmental protection and resource utilization.In this study,a vapor-liquid interface reaction system for mass production of high-quality graphene is reported.The graphene obtained has high crystallinity and few defects during the reaction of CO_(2)and Mg melt.The growth mechanism of graphene is demonstrated in vapor-liquid interface area by combining the CO_(2)bubbles as a soft template to guide growth with the confinement effect of dense MgO nanoparticles.The quality of the graphene is verified by epoxy composites with high electromagnetic shielding effectiveness.Additionally,the V-L reaction method ingeniously solves the dispersion of graphene in metal,providing a preparation strategy of Mg matrix composites with structure and function integration.
基金supported by Natural Science Foundation of Zhejiang Province(No.LR14C160001)National Natural Science Foundation(No.61190114,31370637,31500520)+3 种基金Joint Research fund of Department of Forestry of Zhejiang Province and Chinese Academy of Forestry(No.2017SY04)Key Discipline of Forestry of Creative Technology Project of Zhejiang Province(No.201511)Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization(No.S2017011)Startup Scientific Research Fund for Scholars of Zhejiang A&F University(No.2034020075)
文摘Bamboo forest is an important forest type in subtropical China and is characterized by fast growth and high carbon sequestration capacity. However, the dynamics of carbon fluxes during the fast growing period of bamboo shoots and their correlation with environment factors are poorly understood. We measured carbon dioxide exchange and climate variables using open-path eddy covariance methods during the 2011 growing season in a Moso bamboo forest(MB, Phyllostchys edulis) and a Lei bamboo forest(LB, Phyllostachys violascens) in Zhejiang province,China. The bamboo forests were carbon sinks during the growing season. The minimum diurnal net ecosystem exchange(NEE) at MB and LB sites were-0.64 and-0.66 mg C m^(-2) s^(-1), respectively. The minimum monthly NEE, ecosystem respiration(RE), and gross ecosystem exchange(GEE) were-99.3 ± 4.03, 76.2 ±2.46, and^(-1)91.5 ± 4.98 g C m^(-2) month^(-1), respectively,at MB site, compared with-31.8 ± 3.44, 70.4 ± 1.41,and^(-1)57.9 ± 4.86 g C m^(-2) month^(-1), respectively, at LB site. Maximum RE was 92.1 ± 1.32 g C m^(-2) month^(-1) at MB site and 151.0 ± 2.38 g C m^(-2) month^(-1) at LB site.Key control factors varied by month during the growing season, but across the whole growing season, NEE and GEE at both sites showed similar trends in sensitivities to photosynthetic active radiation and vapor pressure deficit,and air temperature had the strongest correlation with RE at both sites. Carbon fluxes at LB site were more sensitive to soil water content compared to those at MB site. Both onyear(years when many new shoots are produced) and offyear(years when none or few new shoots are produced)should be studied in bamboo forests to better understand their role in global carbon cycling.
基金Supported by The Basic Ability Improvement Project for Young and Middle-aged Teachers in Guangxi Universities(2017KY0288)。
文摘[Objectives] This study was conducted to isolate and screen the bacteria that can convert trans-anethole to anisic acid from star anise and its environmental samples, and identify the bacteria. [Methods] According to the traditional microbial culture method, with trans-anethole as the sole carbon source, through enrichment culture and separation and purification, preliminary screening by thin layer chromatography and re-screening by high-performance liquid chromatography, strains that degraded trans-anethole to produce anisic acid were obtained, and 16 S rDNA sequencing and phylogenetic tree construction were performed for genetic analysis. [Results] Eleven strains that degraded trans-anethole to produce anisic acid were obtained, among which strain NT2 that produced anisic acid with a relatively high efficiency was initially identified as Pseudomonas sp. The strain’s trans-anethole degradation rate was 45.41%, and the molar production rate and cumulative concentration of anisic acid were 21.80% and 1.96 g/L, respectively. [Conclusions] Strain NT2 has a strong ability to degrade trans-anethole to produce anisic acid, and can enrich strain resources for degradation of trans-anethole to anisic acid through microbial conversion.
基金supported by the National Natural Science Foundation of China (Grant Nos.51871074,51971078).
文摘Graphene reinforced magnesium matrix composites have wide applications in automotive,electronics,aerospace and military fields due to the fascinating mechanical properties.However,it is difficult to realize the high strength and ductility simultaneously.In this work,the in situ liquid-state method was utilized to prepare GNPs/Mg6Zn composites via CO_(2)/Mg chemical reaction.Tensile strength of the GNPs/Mg6Zn composites was improved with increasing content of the GNPs.Meantime,the composites also exhibit a notable plastic deformation stage,and especially the ductility of 0.12 GNPs/Mg6Zn composites reaches 27.6%.Therefore,this novel preparation method has great potential application for fabricating Mg matrix composites with high strength and high ductility.
文摘为了解阿勒泰地区额尔齐斯河和乌伦古河流域的鱼类多样性现状和历史演变,本研究于2013–2016年间在该流域的鱼类多样性进行了连续调查,并结合历史资料和标本,以Margalef丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数分析评估了流域内鱼类的多样性水平和时空变化。该流域历史上分布有土著鱼类23种,当前记录到19种,流域内还有外来鱼类15种。阿勒泰鱼类的区系组成以鲤科种类为主,其中特有和珍稀濒危物种占比高,具有重要的保护价值。多样性指数计算结果显示,2013–2016年鱼类多样性情况整体稳定,额尔齐斯河鱼类物种数多于乌伦古河。研究还基于鱼类生物完整性指数(Fish Index of Biological Integrity,F-IBI)对34个采集点的河流健康状况进行了评价,结果显示额尔齐斯河流域大多数调查点的健康状况处于"亚健康"或"一般"水平,乌伦古河流域多数调查点的健康状况处于"健康"水平。水利工程、外来物种、过度捕捞是影响阿勒泰地区鱼类多样性的重要因素。未来应通过水利工程的联合调度、下泄合理生态流量、布设鱼类通道、规范养殖渔业、严控外来物种、本地土著鱼类的人工增殖放流,以及合理的就地保护措施对阿勒泰地区的鱼类多样性加以保护,提升水体健康程度。