[Objectives]This study was conducted to determine the functions of eight ORF genes of porcine circovirus-like virus P1.[Methods]The double-copy tandem molecular cloning of porcine circovirus-like virus P1 genome was u...[Objectives]This study was conducted to determine the functions of eight ORF genes of porcine circovirus-like virus P1.[Methods]The double-copy tandem molecular cloning of porcine circovirus-like virus P1 genome was used to construct molecular clones with eight ORFs deleted by DNA site-directed mutagenesis technology.After transfected into PK15 cells for a certain period of time,RNA were extracted and was used to verify whether the eight ORFs were deleted or not and used for gene microarry analysis.The GO functions and KEGG pathway enrichment of differentially expressed genes were analyzed.[Results]P1 ORF1 is mainly involved in the biological processes of defense response to virus,signal transduction,regulation of Rab GTPase activity,and lipid metabolic process,and involved in the molecular functions of protein phosphatase inhibitor activity,phosphatidylinositol phospholipase C activity,2 iron,2 sulfur cluster binding,phosphoric diester hydrolase activity,and Rab GTPase activator activity,and in the KEGG pathways of secretion of digestive gland and nervous system development.P1 ORF2 is mainly involved in the biological processes of positive regulation of leukocyte chemotaxis,positive regulation of cell proliferation,positive regulation of cell migration,defense response to virus,regulation of cell growth,and involved in the molecular functions of insulin-like growth factor binding,and chemokine activity,and in the KEGG pathways of cytosolic DNA-sensing pathway,RIG-I-like receptor signaling pathway,toll-like receptor signaling pathway,chemokine signaling pathway,and cytokines,cytokine-cytokine receptor interaction.The biological processes,molecular functions and related pathways involving P1 ORF3 and ORF5 are basically similar to those of ORF2.P1 ORF8 is mainly involved in the biological processes of purine ribonucleotide biosynthetic process,amino acid transport,defense response to virus,amino acid transmembrane transport,and involved in molecular functions of N6-(1,2-dicarboxyethyl)AMP AMP-lyase(fumarate-forming)activity,iron-sulfur cluster binding,amino acid transmembrane transporter activity.[Conclusions]The analysis of the ORF functions of P1 virus lays a foundation for the study of its pathogenicity and pathogenesis.展开更多
There are intense interests in discovering pro regenerative medicine leads that can promote cardiac differentiation and regeneration,as well as repair damaged heart tissues.We have combined zebrafish embryo-based scre...There are intense interests in discovering pro regenerative medicine leads that can promote cardiac differentiation and regeneration,as well as repair damaged heart tissues.We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects.Two related compounds with novel structures,named as Cardiomogen 1 and 2(CDMG1 and CDMG2),were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population.We find that Cardiomogen acts as a Wnt inhibitor by targeting p-catenin and reducing Tcf/Lef-mediated transcription in cultured cells.CDMG treatment of amputated zebrafish hearts reduces nuclear p-catenin in injured heart tissue,increases cardiomyocyte(CM)proliferation,and expedites wound healing,thus accelerating cardiac muscle regeneration.Importantly,Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction.Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue,which are in part attributable to the^-catenin reduction.Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration,highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.展开更多
基金National Natural Science Foundation of China(30972184,31272574).
文摘[Objectives]This study was conducted to determine the functions of eight ORF genes of porcine circovirus-like virus P1.[Methods]The double-copy tandem molecular cloning of porcine circovirus-like virus P1 genome was used to construct molecular clones with eight ORFs deleted by DNA site-directed mutagenesis technology.After transfected into PK15 cells for a certain period of time,RNA were extracted and was used to verify whether the eight ORFs were deleted or not and used for gene microarry analysis.The GO functions and KEGG pathway enrichment of differentially expressed genes were analyzed.[Results]P1 ORF1 is mainly involved in the biological processes of defense response to virus,signal transduction,regulation of Rab GTPase activity,and lipid metabolic process,and involved in the molecular functions of protein phosphatase inhibitor activity,phosphatidylinositol phospholipase C activity,2 iron,2 sulfur cluster binding,phosphoric diester hydrolase activity,and Rab GTPase activator activity,and in the KEGG pathways of secretion of digestive gland and nervous system development.P1 ORF2 is mainly involved in the biological processes of positive regulation of leukocyte chemotaxis,positive regulation of cell proliferation,positive regulation of cell migration,defense response to virus,regulation of cell growth,and involved in the molecular functions of insulin-like growth factor binding,and chemokine activity,and in the KEGG pathways of cytosolic DNA-sensing pathway,RIG-I-like receptor signaling pathway,toll-like receptor signaling pathway,chemokine signaling pathway,and cytokines,cytokine-cytokine receptor interaction.The biological processes,molecular functions and related pathways involving P1 ORF3 and ORF5 are basically similar to those of ORF2.P1 ORF8 is mainly involved in the biological processes of purine ribonucleotide biosynthetic process,amino acid transport,defense response to virus,amino acid transmembrane transport,and involved in molecular functions of N6-(1,2-dicarboxyethyl)AMP AMP-lyase(fumarate-forming)activity,iron-sulfur cluster binding,amino acid transmembrane transporter activity.[Conclusions]The analysis of the ORF functions of P1 virus lays a foundation for the study of its pathogenicity and pathogenesis.
基金This research was supported in part by grants from the National Natural Science Foundation of China(NSFC315300A4,NSFC31471357,and NSFC31172173 to T.P.Z.).
文摘There are intense interests in discovering pro regenerative medicine leads that can promote cardiac differentiation and regeneration,as well as repair damaged heart tissues.We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects.Two related compounds with novel structures,named as Cardiomogen 1 and 2(CDMG1 and CDMG2),were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population.We find that Cardiomogen acts as a Wnt inhibitor by targeting p-catenin and reducing Tcf/Lef-mediated transcription in cultured cells.CDMG treatment of amputated zebrafish hearts reduces nuclear p-catenin in injured heart tissue,increases cardiomyocyte(CM)proliferation,and expedites wound healing,thus accelerating cardiac muscle regeneration.Importantly,Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction.Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue,which are in part attributable to the^-catenin reduction.Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration,highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.