We study a random planar honeycomb lattice model, namely the random double hexagonal chains. This is a lattice system with nonperiodic boundary condition. The Wiener number is an important molecular descriptor based o...We study a random planar honeycomb lattice model, namely the random double hexagonal chains. This is a lattice system with nonperiodic boundary condition. The Wiener number is an important molecular descriptor based on the distances, which was introduced by the chemist Harold Wiener in 1947. By applying probabilistic method and combinatorial techniques we obtained an explicit analytical expression for the expected value of Wiener number of a random double hexagonal chain, and the limiting behaviors on the annealed entropy of Wiener number when the random double hexagonal chain becomes infinite in length are analyzed.展开更多
文摘We study a random planar honeycomb lattice model, namely the random double hexagonal chains. This is a lattice system with nonperiodic boundary condition. The Wiener number is an important molecular descriptor based on the distances, which was introduced by the chemist Harold Wiener in 1947. By applying probabilistic method and combinatorial techniques we obtained an explicit analytical expression for the expected value of Wiener number of a random double hexagonal chain, and the limiting behaviors on the annealed entropy of Wiener number when the random double hexagonal chain becomes infinite in length are analyzed.