期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency 被引量:3
1
作者 Deyu Gao Liqun Yang +8 位作者 Xiaohui Ma xueni shang Chen Wang Mengjia Li Xinmeng Zhuang Boxue Zhang Hongwei Song Jiangzhao Chen Cong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期659-666,I0018,共9页
Interfacial defects and energy barrier would result in serious interfacial non-radiative recombination losses.In addition,the quality of perovskite films is highly dependent on deposition substrates.Consequently,there... Interfacial defects and energy barrier would result in serious interfacial non-radiative recombination losses.In addition,the quality of perovskite films is highly dependent on deposition substrates.Consequently,there is an urgent desire to develop multifunctional interface modulators to manage the interface between electron transport layer and perovskite layer.Here,we report a multifunctional buried interface modulation strategy that 4-fluoro-phenylammonium tetrafluoroborate (FBABF_(4)) consisting of simultaneously fluorinated anion and cation is inserted between SnO_(2)layer and perovskite layer.It is uncovered by time-of-flight secondary ion mass spectroscopy that the anion and cation in modifier are mainly located at this interface,which is put down to coordination bond of the fluorine atom on BF_(4)^(-) with SnO_(2),and the hydrogen bond of the fluorine atom on FBA^(+) with formamidinium.This suggests that simultaneous fluorination of anion and cation in the ionic liquid molecule is of crucial importance to ameliorate interfacial contact through chemical linker.The interface modification approach enables the realization of interfacial defect passivation,interfacial energy band alignment modulation,and perovskite crystallization manipulation,which are translated into enhanced efficiency and stability as well as significantly suppressed hysteresis.The multiple functions of FBABF_(4) endow the modified solar cells excellent photovoltaic performance with an efficiency exceeding 23%along with appealing long-term stability.This work highlights the critical role of fluorination strategy in engineering multifunctional organic salt modulators for improving interfacial contact. 展开更多
关键词 Perovskite solar cells Interface engineering Buried interface Ionic liquid MULTIFUNCTIONAL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部