期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Metal organic framework‐ionic liquid hybrid catalysts for the selective electrochemical reduction of CO_(2) to CH4 被引量:1
1
作者 Ernest Pahuyo Delmo Yian Wang +10 位作者 Jing Wang Shangqian Zhu Tiehuai Li xueping qin Yibo Tian qinglan Zhao Juhee Jang Yinuo Wang Meng Gu Lili Zhang Minhua Shao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1687-1696,共10页
The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current C... The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current CO_(2) electrolyzers remain impractical on a large scale due to the low current densities and faradaic efficiencies(FE)on various electrocatalysts.In this study,hybrid HKUST‐1 metal‐organic framework‒fluorinated imidazolium‐based room temperature ionic liquid(RTIL)electrocatalysts are designed to selectively reduce CO_(2) to CH_(4).An impressive FE of 65.5%towards CH_(4) at-1.13 V is achieved for the HKUST‐1/[BMIM][PF_(6)]hybrid,with a stable FE greater than 50%maintained for at least 9 h in an H‐cell.The observed improvements are attributed to the increased local CO_(2) concentration and the improved CO_(2)‐to‐CH_(4) thermodynamics in the presence of the RTIL molecules adsorbed on the HKUST‐1‐derived Cu clusters.These findings offer a novel approach of immobilizing RTIL co‐catalysts within porous frameworks for CO_(2) electroreduction applications. 展开更多
关键词 CO_(2)electroreduction METHANE Room temperature ionic liquid Metal organic framework Catalyst design DFT calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部