期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
校企联姻筑巢育人,匠心培育筑梦兴牧——黑龙江农业经济职业学院畜牧兽医专业“三主体、三阶段、三融合”现代学徒制人才培养典型案例 被引量:1
1
作者 范学伟 冯永谦 +2 位作者 姜鑫 张绍男 田洪峰 《猪业科学》 2021年第5期70-73,共4页
黑龙江省是我国重要的畜牧业生产基地,习近平总书记在黑龙江省考察调研期间针对农业供给侧改革明确指出:加快推进一、二、三产业深度融合,切实发挥畜牧产业在粮头食尾、农头工尾中的桥梁纽带作用,把黑龙江省建设成全国重要的绿色、安全... 黑龙江省是我国重要的畜牧业生产基地,习近平总书记在黑龙江省考察调研期间针对农业供给侧改革明确指出:加快推进一、二、三产业深度融合,切实发挥畜牧产业在粮头食尾、农头工尾中的桥梁纽带作用,把黑龙江省建设成全国重要的绿色、安全、放心、高品质食品供应基地。近年来,深圳金新农、广东温氏、江西正邦、四川天兆等企业生猪养殖项目纷纷落地投产黑龙江,截至2020年底,黑龙江省生猪存栏1 371.2万头,比上年增长16.9%;出栏1 790.0万头。 展开更多
关键词 畜牧业生产基地 农业供给侧改革 畜牧兽医专业 食品供应 校企联姻 畜牧产业 深度融合 桥梁纽带作用
下载PDF
Bias Correction and Ensemble Projections of Temperature Changes over Ten Subregions in CORDEX East Asia
2
作者 Chenwei SHEN Qingyun DUAN +4 位作者 Chiyuan MIAO Chang XING xuewei fan Yi WU Jingya HAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第11期1191-1210,共20页
Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissio... Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissions scenarios.This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical(1980−2005)temperature simulations over East Asia.Future(2006−49)temperature trends under the Representative Concentration Pathway(RCP)4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method.Results show the following:(1)The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions,especially in the Tibetan Plateau region.(2)All bias correction methods can significantly reduce the simulation biases.The quantile mapping method outperforms other bias correction methods in all RCMs,with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8%(HadGEM3-RA),63.2%(MM5),51.3%(RegCM),80.7%(YSU-RCM)and 62.0%(WRF).(3)The Bayesian model averaging(BMA)method outperforms the simple multi-model averaging(SMA)method in narrowing the uncertainty of bias-corrected results.For the spatial correlation coefficient,the improvement rate of the BMA method ranges from 2%to 31%over the 10 subregions,when compared with individual RCMs.(4)For temperature projections,the warming is significant,ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario.(5)The quantile mapping method reduces the uncertainty over all subregions by between 66%and 94%. 展开更多
关键词 CORDEX-EA bias correction BMA temperature projection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部