期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
NORMALIZED SOLUTIONS FOR THE GENERAL KIRCHHOFF TYPE EQUATIONS
1
作者 Wenmin LIU xuexiu zhong Jinfang ZHOU 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1886-1902,共17页
In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\ve... In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2{\rm d}x\right)\Delta u+\lambda u=g(u)~\hbox{in}~\mathbb{R}^N,u\in H^1(\mathbb{R}^N),N\geq 1,satisfying the normalization constraint\int_{\mathbb{R}^N}u^2{\rm d}x=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical. 展开更多
关键词 normalized solution Kirchhoff type equations general nonlinearities asymptotic behavior
下载PDF
Bifurcation from the essential spectrum for an elliptic equation with general nonlinearities
2
作者 Jianjun Zhang xuexiu zhong Huansong Zhou 《Science China Mathematics》 SCIE CSCD 2023年第10期2243-2260,共18页
In this paper,based on some prior estimates,we show that the essential spectrum λ=0 is a bifurcation point for a superlinear elliptic equation with only local conditions,which generalizes a series of earlier results ... In this paper,based on some prior estimates,we show that the essential spectrum λ=0 is a bifurcation point for a superlinear elliptic equation with only local conditions,which generalizes a series of earlier results on an open problem proposed by Stuart(1983). 展开更多
关键词 elliptic equation bifurcation point essential spectrum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部