Aiming at the detection of the sucker rod defects,a real-time detection system is designed using the non-destructive testing technology of magnetic flux leakage(MFL).An MFL measurement system consists of many parts,an...Aiming at the detection of the sucker rod defects,a real-time detection system is designed using the non-destructive testing technology of magnetic flux leakage(MFL).An MFL measurement system consists of many parts,and this study focuses on the signal acquisition and processing system.First of all,this paper introduces the hardware part of the acquisition system in detail,including the selection of the Hall-effect sensor,the design of the signal conditioning circuit,and the working process of the single chip computer(SCM)control serial port.Based on LabVIEW,a graphical programming software,the software part of the acquisition system is written,including serial port parameter configuration,detection signal recognition,original signal filtering,real-time display,data storage and playback.Finally,an experimental platform for the MFL detection is set up,and the MFL measurement is carried out on the transverse and longitudinal defects of the sucker rod surface.The experimental result shows that the designed acquisition and processing system has good detection performance,simple design and high flexibility.展开更多
In today's globalized digital world, networkbased, mobile, and interactive collaborations have enabled work platforms of personal computers to cross multiple geographical boundaries. The new requirements of privacy-p...In today's globalized digital world, networkbased, mobile, and interactive collaborations have enabled work platforms of personal computers to cross multiple geographical boundaries. The new requirements of privacy-preservation, sensitive information sharing, portability, remote attestation, and robust security create new problems in system design and implementation. There are critical demands for highly secure work platforms and security enhancing mechanisms for ensuring privacy protection, component integrity, sealed storage, and remote attestation of platforms. Trusted computing is a promising technology for enhancing the security of a platform using a trusted platform module (TPM). TPM is a tamper-resistant microcontroller designed to provide robust security capabilities for computing platforms. It typically is affixed to the motherboard with a low pin count (LPC) bus. However, it limited in that TPM cannot be used directly in current common personal computers (PCs), and TPM is not flexible and portable enough to be used in different platforms because of its interface with the PC and its certificate and key structure. For these reasons, we propose a portable trusted platform module (PTPM) scheme to build a trusted platform for the common PC based on a single cryptographic chip with a universal serial bus (USB) interface and extensible firmware interface (EFI), by which platforms can get a similar degree of security protection in general-purpose systems. We show the structure of certificates and keys, which can bind to platforms via a PTPM and provide users with portability and flexibility in different platforms while still allowing the user and platform to be protected and attested. The implementation of prototype system is described in detail and the performance of the PTPM on cryptographic operations and time-costs of the system bootstrap are evaluated and analyzed. The results of experiments show that PTPM has high performances for supporting trusted computing and it can be used flexibly and portably by the user.展开更多
文摘Aiming at the detection of the sucker rod defects,a real-time detection system is designed using the non-destructive testing technology of magnetic flux leakage(MFL).An MFL measurement system consists of many parts,and this study focuses on the signal acquisition and processing system.First of all,this paper introduces the hardware part of the acquisition system in detail,including the selection of the Hall-effect sensor,the design of the signal conditioning circuit,and the working process of the single chip computer(SCM)control serial port.Based on LabVIEW,a graphical programming software,the software part of the acquisition system is written,including serial port parameter configuration,detection signal recognition,original signal filtering,real-time display,data storage and playback.Finally,an experimental platform for the MFL detection is set up,and the MFL measurement is carried out on the transverse and longitudinal defects of the sucker rod surface.The experimental result shows that the designed acquisition and processing system has good detection performance,simple design and high flexibility.
文摘In today's globalized digital world, networkbased, mobile, and interactive collaborations have enabled work platforms of personal computers to cross multiple geographical boundaries. The new requirements of privacy-preservation, sensitive information sharing, portability, remote attestation, and robust security create new problems in system design and implementation. There are critical demands for highly secure work platforms and security enhancing mechanisms for ensuring privacy protection, component integrity, sealed storage, and remote attestation of platforms. Trusted computing is a promising technology for enhancing the security of a platform using a trusted platform module (TPM). TPM is a tamper-resistant microcontroller designed to provide robust security capabilities for computing platforms. It typically is affixed to the motherboard with a low pin count (LPC) bus. However, it limited in that TPM cannot be used directly in current common personal computers (PCs), and TPM is not flexible and portable enough to be used in different platforms because of its interface with the PC and its certificate and key structure. For these reasons, we propose a portable trusted platform module (PTPM) scheme to build a trusted platform for the common PC based on a single cryptographic chip with a universal serial bus (USB) interface and extensible firmware interface (EFI), by which platforms can get a similar degree of security protection in general-purpose systems. We show the structure of certificates and keys, which can bind to platforms via a PTPM and provide users with portability and flexibility in different platforms while still allowing the user and platform to be protected and attested. The implementation of prototype system is described in detail and the performance of the PTPM on cryptographic operations and time-costs of the system bootstrap are evaluated and analyzed. The results of experiments show that PTPM has high performances for supporting trusted computing and it can be used flexibly and portably by the user.