The paper analyzes the changes in insecticide consumption and the proportion of insecticides in pesticides in the world and several typical countries in the past 30 years,in order to provide a reference for scientific...The paper analyzes the changes in insecticide consumption and the proportion of insecticides in pesticides in the world and several typical countries in the past 30 years,in order to provide a reference for scientific treatment of pesticide and further implementation of China s"double reduction"policy.展开更多
Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment c...Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.展开更多
Controllably mounting foreign atoms on the surfaces of earth-abundant electrocatalysts strongly improve their surface electronic properties for optimizing the catalytic performance of surficial sites to an unusual lev...Controllably mounting foreign atoms on the surfaces of earth-abundant electrocatalysts strongly improve their surface electronic properties for optimizing the catalytic performance of surficial sites to an unusual level,and provides a good platform to gain deep insights into catalytic reactions.The present work describes,employing ultrafine W2C nanoislands(average size:2.3 nm)monodispersed on the N,P dual-doped carbon frameworks as a model system,how to regulate the atomic phosphorous-mounting effect on the surfaces of W_(2)C to derive an active and stable P-mounting W_(2)C(WCP)catalyst for both acidic and alkaline hydrogen evolution reaction(HER).Since in situ phosphorus substitution into carbon sites of preformed W_(2)C nanoislands gradually proceeds from surfaces to solids,so that using a proper amount of phosphorus sources can readily control the surface mounting level to avoid the mass P-doping into the bulk.By this way,the activity per active site of WCP catalyst with robust stability can be optimized to 0.07 and 0.56 H_(2 )s^(-1) at-200 mV overpotential in acid and base,respectively,which reach up to the several-fold of pure-phase W_(2)C(0.01 and 0.05 H_(2) s^(-1)).Theoretical investigations suggest that compared with solid P doping,the P mounting on W_(2)C surface can more remarkably enhance its metallicity and decrease the hydrogen release barrier.This finding disclosed a key correlation between surface foreign atom-mounting and catalytic activity,and suggested a logical extension to other earth-abundant catalysts for various catalytic reactions.展开更多
Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary...Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary CFN challenge is to leverage network resources and computing resources.Although recent advances in deep reinforcement learning(DRL)have brought significant improvement in network optimization,these methods still suffer from topology changes and fail to generalize for those topologies not seen in training.This paper proposes a graph neural network(GNN)based DRL framework to accommodate network trafic and computing resources jointly and efficiently.By taking advantage of the generalization capability in GNN,the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.展开更多
The recent advancements in developing the CRISPR/Cas9 system and various derivative tools(e.g.,base editors)have accelerated basic plant science research and crop improvement by creating multiple types of genetic vari...The recent advancements in developing the CRISPR/Cas9 system and various derivative tools(e.g.,base editors)have accelerated basic plant science research and crop improvement by creating multiple types of genetic variations(Li et al.,2023a).展开更多
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determ...Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.展开更多
文摘The paper analyzes the changes in insecticide consumption and the proportion of insecticides in pesticides in the world and several typical countries in the past 30 years,in order to provide a reference for scientific treatment of pesticide and further implementation of China s"double reduction"policy.
基金Science and Technology Research Program of Xiamen Customs(2020XK08).
文摘Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.
文摘Controllably mounting foreign atoms on the surfaces of earth-abundant electrocatalysts strongly improve their surface electronic properties for optimizing the catalytic performance of surficial sites to an unusual level,and provides a good platform to gain deep insights into catalytic reactions.The present work describes,employing ultrafine W2C nanoislands(average size:2.3 nm)monodispersed on the N,P dual-doped carbon frameworks as a model system,how to regulate the atomic phosphorous-mounting effect on the surfaces of W_(2)C to derive an active and stable P-mounting W_(2)C(WCP)catalyst for both acidic and alkaline hydrogen evolution reaction(HER).Since in situ phosphorus substitution into carbon sites of preformed W_(2)C nanoislands gradually proceeds from surfaces to solids,so that using a proper amount of phosphorus sources can readily control the surface mounting level to avoid the mass P-doping into the bulk.By this way,the activity per active site of WCP catalyst with robust stability can be optimized to 0.07 and 0.56 H_(2 )s^(-1) at-200 mV overpotential in acid and base,respectively,which reach up to the several-fold of pure-phase W_(2)C(0.01 and 0.05 H_(2) s^(-1)).Theoretical investigations suggest that compared with solid P doping,the P mounting on W_(2)C surface can more remarkably enhance its metallicity and decrease the hydrogen release barrier.This finding disclosed a key correlation between surface foreign atom-mounting and catalytic activity,and suggested a logical extension to other earth-abundant catalysts for various catalytic reactions.
基金supported by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary CFN challenge is to leverage network resources and computing resources.Although recent advances in deep reinforcement learning(DRL)have brought significant improvement in network optimization,these methods still suffer from topology changes and fail to generalize for those topologies not seen in training.This paper proposes a graph neural network(GNN)based DRL framework to accommodate network trafic and computing resources jointly and efficiently.By taking advantage of the generalization capability in GNN,the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.
基金supported by the National Key Research and Development Program of China(2021YFF1000203)the National Natural Science Foundation of China(32000286 and 32370432)。
文摘The recent advancements in developing the CRISPR/Cas9 system and various derivative tools(e.g.,base editors)have accelerated basic plant science research and crop improvement by creating multiple types of genetic variations(Li et al.,2023a).
基金This research was supported by the National Basic Research Program of China,China Postdoctoral Science Foundation
文摘Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.