期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Improved YOLOv5s-Based Smoke Detection System for Outdoor Parking Lots
1
作者 Ruobing Zuo Xiaohan Huang +1 位作者 xuguo jiao Zhenyong Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3333-3349,共17页
In the rapidly evolving urban landscape,outdoor parking lots have become an indispensable part of the city’s transportation system.The growth of parking lots has raised the likelihood of spontaneous vehicle combus-ti... In the rapidly evolving urban landscape,outdoor parking lots have become an indispensable part of the city’s transportation system.The growth of parking lots has raised the likelihood of spontaneous vehicle combus-tion,a significant safety hazard,making smoke detection an essential preventative step.However,the complex environment of outdoor parking lots presents additional challenges for smoke detection,which necessitates the development of more advanced and reliable smoke detection technologies.This paper addresses this concern and presents a novel smoke detection technique designed for the demanding environment of outdoor parking lots.First,we develop a novel dataset to fill the gap,as there is a lack of publicly available data.This dataset encompasses a wide range of smoke and fire scenarios,enhanced with data augmentation to ensure robustness against diverse outdoor conditions.Second,we utilize an optimized YOLOv5s model,integrated with the Squeeze-and-Excitation Network(SENet)attention mechanism,to significantly improve detection accuracy while maintaining real-time processing capabilities.Third,this paper implements an outdoor smoke detection system that is capable of accurately localizing and alerting in real time,enhancing the effectiveness and reliability of emergency response.Experiments show that the system has a high accuracy in terms of detecting smoke incidents in outdoor scenarios. 展开更多
关键词 YOLOv5s smoke detection deep learning SENet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部