Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic ano...Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic anomalies in China and surrounding regions are relatively weak.Specialized research on each of these anomalies has been quite inadequate;their geological origins remain unclear,in particular their connection to tectonic activity in the Chinese and surrounding regions.We focus on six magnetic high anomalies over the(1)Tarim Basin,(2)Sichuan Basin(3)Great Xing’an Range,(4)Barmer Basin,(5)Central Myanmar Basin,and(6)Sunda and Banda Arcs,and a striking magnetic low anomaly along the southern part of the Himalayan-Tibetan Plateau.We have analyzed their geological origins by reviewing related research and by detailed comparison with geological results.The tectonic backgrounds for these anomalies belong to two cases:either ancient basin basement,or subduction-collision zone.However,the geological origins of large-scale regional magnetic anomalies are always subject to dispute,mainly because of limited surface exposure of sources,later tectonic destruction,and superposition of multi-phase events.展开更多
Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characte...Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.展开更多
The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequen...The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequency in the ionosphere.The ionosphere refractive index is also analyzed.The ionosphere above 70 km is considered to be homogeneous and anisotropic,and the reflection and transmission coefficient matrix is calculated using matrix method.Simultaneously the Booker quartic equation is solved to get the refractive index in the ionosphere.The results show that when the wave frequency is higher,it is easier to penetrate into the ionosphere from its bottom boundary and the propagation attenuation in the ionosphere is smaller.TE(traverse electric) wave and TM(traverse magnetic) wave can both penetrate into the ionosphere with a small incident angle,while TE wave can hardly transmit into the ionosphere when the incident angle is large.The transmission coefficient decreases as the geomagnetic inclination increases.TE and TM wave cannot penetrate into the ionosphere at magnetic equator.When the electron collision frequency is higher,it is easier for VLF wave to penetrate into the ionosphere and the attenuation of ordinary wave is weaker,which may be caused by the energy transportation between the waves and the particles.The ordinary(O) wave experiences severer attenuation than extraordinary(X) wave,and X wave is a penetration mode whereas O wave is a non-penetration mode in the ionosphere.All the results indicate that VLF wave with higher frequency is easier to penetrate into the ionosphere and to be recorded by the satellites at high latitude.It is hard for ULF and the lower frequency VLF wave to transmit into the ionosphere directly for the severe reflection and attenuation.It may transmit into the ionosphere with a small incident angle due to the nonlinear effect,for example,the interaction between the waves and the particles or cross modulation,and then propagate along the whistle duct with small attenuation.This work may be a preliminary theoretical exploration for the future calculation on the response of ground based VLF artificial transmitter in the ionosphere and further study on the seismic ionosphere coupling model.展开更多
Ionospheric TEC (total electron content) time series are derived from GPS measurements at 13 stations around the epicenter of the 2008 Wenchuan earthquake. Defining anomaly bounds for a sliding window by quartile an...Ionospheric TEC (total electron content) time series are derived from GPS measurements at 13 stations around the epicenter of the 2008 Wenchuan earthquake. Defining anomaly bounds for a sliding window by quartile and 2-standard deviation of TEC values, this paper analyzed the characteristics of ionospheric changes before and after the destructive event. The Neyman-Pearson signal detection method is employed to compute the probabilities of TEC abnormalities. Result shows that one week before the Wenchuan earthquake, ionospheric TEC over the epicenter and its vicinities displays obvious abnormal disturbances, most of which are positive anomalies. The largest TEC abnormal changes appeared on May 9, three days prior to the seismic event. Signal detection shows that the largest possibility ofTEC abnormity on May 9 is 50.74%, indicating that ionospheric abnormities three days before the main shock are likely related to the preparation process of the Ms8.0 Wenchuan earthquake.展开更多
1.Introduction The China Seismo-Electromagnetic Satellite (CSES), which is also called ZhangHeng-1 (ZH-1), is the first Chinese space-borne platform dedicated to geophysical field measurement andearthquake monitoring ...1.Introduction The China Seismo-Electromagnetic Satellite (CSES), which is also called ZhangHeng-1 (ZH-1), is the first Chinese space-borne platform dedicated to geophysical field measurement andearthquake monitoring by detecting variations in the electromagnetic environment of space. The CSES was launched successfully at15:51 on February 2, 2018, at China’s Jiuquan Satellite Launching Center.展开更多
In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remot...In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remote sensing, and seismo-ionospheric detecting. Many new monitoring data in this domain have been used, and new data processing methods have been developed to obtain high-precision images about crustal deformation, outgoing longwave radiation (OLR), surface latent heat flux (SLHF), and ionospheric parameters. The development in monitoring technology and data processing technique largely enriches earthquake research information and provides new tools for earthquake stereoscope monitoring system, especially on the space part. Finally, new developing trend in this area was introduced, and some key problems in future work were pointed out.展开更多
The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carr...The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.展开更多
The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric ...The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.展开更多
The Langmuir Probe(LAP), onboard the China Seismo-Electromagnetic Satellite(CSES), has been designed for in situ measurements of bulk parameters of the ionosphere plasma, the first Chinese application of in-situ measu...The Langmuir Probe(LAP), onboard the China Seismo-Electromagnetic Satellite(CSES), has been designed for in situ measurements of bulk parameters of the ionosphere plasma, the first Chinese application of in-situ measurement technology in the field of space exploration. The two main parameters measured by LAP are electron density and temperature. In this paper, a brief description of the LAP and its work mode are provided. Based on characteristics of the LAP, and assuming an ideal plasma environment, we introduce in detail a method used to invert the I-V curve; the data products that can be accessed by users are shown. Based on the LAP data available, this paper reports that events such as earthquakes and magnetic storms are preceded and followed by obvious abnormal changes. We suggest that LAP could provide a valuable data set for studies of space weather, seismic events, and the ionospheric environment.展开更多
The high energetic particle package(HEPP) on-board the China Seismo-Electromagnetic Satellite(CSES) was launched on February 2, 2018. This package includes three independent detectors: HEPP-H, HEPP-L, and HEPP-X. HEPP...The high energetic particle package(HEPP) on-board the China Seismo-Electromagnetic Satellite(CSES) was launched on February 2, 2018. This package includes three independent detectors: HEPP-H, HEPP-L, and HEPP-X. HEPP-H and HEPP-L can detect energetic electrons from 100 keV to approximately 50 MeV and protons from 2 MeV to approximately 200 MeV. HEPP-X can measure solar X-rays in the energy range from 1 keV to approximately 20 keV. The objective of the HEPP payload was to provide a survey of energetic particles with high energy, pitch angle, and time resolutions in order to gain new insight into the space radiation environments of the near-Earth system. Particularly, the HEPP can provide new measurements of the magnetic storm related precipitation of electrons in the slot region, and the dynamics of radiation belts. In this paper, the HEPP scientific data sets are described and initial results are provided.The scientific data can show variations in the flux of energetic particles during magnetic storms.展开更多
Four levels of the data from the search coil magnetometer(SCM) onboard the China Seismo-Electromagnetic Satellite(CSES)are defined and described. The data in different levels all contain three components of the wavefo...Four levels of the data from the search coil magnetometer(SCM) onboard the China Seismo-Electromagnetic Satellite(CSES)are defined and described. The data in different levels all contain three components of the waveform and/or spectrum of the induced magnetic field around the orbit in the frequency range of 10 Hz to 20 kHz; these are divided into an ultra-low-frequency band(ULF,10–200 Hz), an extremely low frequency band(ELF, 200–2200 Hz), and a very low frequency band(VLF, 1.8–20 kHz). Examples of data products for Level-2, Level-3, and Level-4 are presented. The initial results obtained in the commission test phase demonstrated that the SCM was in a normal operational status and that the data are of high enough quality to reliably capture most space weather events related to low-frequency geomagnetic disturbances.展开更多
This study presents signatures of seismo-ionospheric perturbations possibly related to the 14 July 2019 M_(w)7.2 Laiwui earthquake,detected by a cross-validation analysis of total electron content(TEC)data of the glob...This study presents signatures of seismo-ionospheric perturbations possibly related to the 14 July 2019 M_(w)7.2 Laiwui earthquake,detected by a cross-validation analysis of total electron content(TEC)data of the global ionospheric map(GIM)from GPS and plasma parameter data recorded by the China Seismo-Electromagnetic Satellite(CSES).After separating pre-seismic ionospheric phenomena from the ionospheric disturbances due to the magnetospheric and solar activities,we have identified three positive temporal anomalies,around the epicenter,at 1 day,3 days and 8 days before the earthquake(14 July 2019),along with a negative anomaly 6 days after the earthquake.These results agree well with the TEC spatial variations in latitude-longitude-time(LLT)maps.To confirm these anomalies further,we employed the moving mean method(MMM)to analyze ionospheric plasma parameters(electron,O^(+) and He^(+) densities)recorded by the Langmuir probe(LAP)and Plasma Analyzer Package(PAP)onboard the CSES.The analysis detected on,on Day Two,Day Four,and Day Seven before the earthquake,remarkable enhancements along the orbits around when in proximity to the epicenter.To make the investigations still more convincing,we compared the orbits on which anomalous readings were recorded to their corresponding four nearest revisiting orbits;the comparison did indeed indicate the existence of plasma parameter anomalies that appear to be associated with the Laiwui earthquake.All these results ilustrate that the unusual ionospheric perturbations detected through GPS and CSES data are possibly associated with the M_(w)7.2 Laiwui earthquake,which suggests that at least some earthquakes may be predicted by alertness to pre-seismic ionospheric anomalies over regions known to be at seismic risk.This case study also contributes additional information of value to our understanding of lithosphere-atmosphere-ionosphere coupling.展开更多
The thermo-electric coefficients of twenty-six magnetite samples, formed either by magmatism or metamorphism, were tested by the thermo-electric instrument BHET -06. Results showed that the coef- ficient is of a const...The thermo-electric coefficients of twenty-six magnetite samples, formed either by magmatism or metamorphism, were tested by the thermo-electric instrument BHET -06. Results showed that the coef- ficient is of a constant value of about -0.05 mV/℃. It is emphasized that because every magnetite grain was tested randomly, the coefficient is independent of the crystallographic direction. This fact means the thermal voltage generated from a single magnetite crystal can be accumulated, and as a result a new thermo-electric field can arise when a gradient thermal field exists and is active within the earth's crust. Because magnetite is widespread in the earth's crust (generally appearing more in the middle-lower crust), there is more-thanrandom probability that the additional thermo-electric field can be generated when certain thermal conditions are fulfilled. We, therefore, used the thermo-electric effect of magnetite to study the mechanism responsible for the presence of abnormal geo-electric fields during earthquake formation and occurrence, because gradient thermal fields always exist before earthquakes. The possible presence of additional thermo-electric fields was calculated under theoretical seismological conditions, using the following calculation formula:E= - 0.159(σ×△T×Ф×ρ2×[[(h^2 - 2x^2)cos α + 3hxsin α]/ρ1 (h^2 +x^2)^5/2). In the above formula, σ is thermo-electric coefficient of magnetite, △T is the temperature difference acting on it, Ф is a sectional area on a block of magnetite vertically perpendicular to the direction of the thermal current, ρ1 and ρ2 are the respective resistivities of magnetite and the crust, and h, α, and x, respectively, h is the depth of embedded magnetite block. α means the angle created by the horizontal line and ligature of the two poles of magnetite block, and x is the distance from observation point to projective center point of the magnetite block on earth surface. According to simulations calculated with this formula, additional thermo-electric field intensity may reach as high as n to n × 10^2 mV/km. This field is strong enough to cause obvious anomalies in the background geo-electric field, and can be easy probed by earthquake monitoring equipment. Therefore, we hypothesize that geo-electric abnormalities which occur during earthquakes may be caused by the thermo-electric effect of magnetite.展开更多
High energy particles are the main target of satellite space exploration; particle storm events are closely related to solar activity,cosmic ray distribution, and magnetic storms. The commonly seen energetic particle(...High energy particles are the main target of satellite space exploration; particle storm events are closely related to solar activity,cosmic ray distribution, and magnetic storms. The commonly seen energetic particle(electron) precipitation anomalies include mainly the inner and outer Van Allen radiation belts, the South Atlantic Anomaly, and the anomalous stripes excited by artificial electromagnetic waves. The China Seismo-Electromagnetic Satellite(CSES), launched in February of 2018, provides a platform for studying ionospheric particle disturbances. This paper reports the first studies of electron precipitation phenomenon based on high energy particle data from the CSES. We find that the global distribution of electron fluxes in the low energy band(0.1–3 MeV) can relatively well reflect the anomalous precipitation belt, which is consistent with results based on the DEMETER satellite, indicating that the quality of the lowenergy band payload of the CSES is good. In addition, this paper makes an in-depth study of the electron precipitation belt excited by the NWC artificial VLF electromagnetic transmitter located in Australia, which appears as a typical wisp structure on the energy spectrum. The magnetic shell parameter L corresponding to the precipitation belt ranges from 1.44 to 1.74, which is close to the L value(~1.45) of the NWC transmitter; the energy of the precipitation electrons is between 100 keV and 361.57 keV, among which the precipitation of 213.73 keV electrons is most conspicuous.展开更多
Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibi...Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density (10-7-10-s A/m^2) generated by the pulsed power systems at the epicenter depth (5-10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory "earthquake" triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory "earthquake" (sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98-0.99 of its critical value. The threshold of electric triggering action is about 20 A/m^2 that is 7-8 orders of magnitude higher than estimated electric current density for Bishkek test site (Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.展开更多
Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, ...Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, using a pair of Europe remote-sensing satellite (ERS)-1/2 tandem SAR images acquired on 6 and 7 April 1996. A portion of the In- SAR-derived DEM is selected and compared with the 1:50 000 DEM to determine the precision of the InSAR-derived DEM. The comparison indicates that the root mean squared errors (RMSE), which are used to evaluate error, are about 35, 60, 10, and 15 m in the studied area, mountainous area, basin area and near-fault area, respectively, suggesting that obvious errors are mainly in mountainous area. Besides, the limitation of InSAR technology to generate DEM is analyzed. Our investigation shows that InSAR is an effective tool in geodesy and an important complement to field surveying in some dangerous areas.展开更多
The electromagnetic satellite Zhangheng 01(ZH-01) was successfully launched on February 2, 2018. The GNSS Radio Occultation(GRO) receiver on board the satellite is able to observe the occultation events of GPS and Bei...The electromagnetic satellite Zhangheng 01(ZH-01) was successfully launched on February 2, 2018. The GNSS Radio Occultation(GRO) receiver on board the satellite is able to observe the occultation events of GPS and BeiDou navigation satellites. We analyzed the data acquired during the in-orbit testing period. We concludes that the GRO ionosphere inversion results are reasonable,the trend is correct, the satellite can observe about 600 ionosphere occultation events each day. The global coverage of more than 30000 consecutive GRO events in more than two months were analyzed and compared with COSMIC observations: both the GRO and COSMIC occultation can realize global coverage: the Nm F2 and Hm F2 global distributions are similar and change obviously with latitude. We used three digisondes at different latitudes to analyze and compare the spatio-temporally consistent GRO data: the RMSE of GRO Nm F2 relative to digisonde is better than 9.41%, the correlation coefficient is better than 0.8682: the relative RMSE of Hm F2 is better than 7.80% and the correlation coefficient is better than 0.7066.展开更多
A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selectio...A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.展开更多
Schumann resonance (SR) is an electromag- netic resonance phenomenon in the Earth-ionosphere cavity exited by global lightning activities when the wavelength matches the circumference of the Earth, and the lowest fo...Schumann resonance (SR) is an electromag- netic resonance phenomenon in the Earth-ionosphere cavity exited by global lightning activities when the wavelength matches the circumference of the Earth, and the lowest four peak frequencies of SR are about 8, 14, 20, and 26 Hz. This article presents the new observational data of SR in China. The observations of two horizontal mag- netic components (BNs and BEw) in the frequency band range of 3-29 Hz at Yongsheng observatory (26.7°N, 100.8°E) in southwestern China were mainly analyzed. It is found that the SR amplitudes at peak frequencies in BNs and BEw components all showed diurnal and seasonal variations, and that the SR amplitude in BNS component is always higher than that in BEw component. Diurnal vari- ation of SR amplitude around equinoxes and solstices inBNs component is related to active intervals of three global thunderstorm centers, while SR amplitude in BEw com- ponent is the most significant at around 16 LT, corre- sponding to Asian center. SR amplitudes both in BNs and BEw components increase in the rainy season from May to September. In addition, the SR anomalies in association with the 2011 Japan earthquake are exhibited. The anom- alous effect was characterized by an increase in amplitude at the lowest four SR modes beginning at 4 days before this earthquake. Upon analyzing the wave interference between the direct wave and disturbed wave scattered by localized modification of lower ionosphere over the epicenter, Asian and African thunderstorm centers are found to contribute to anomalous effect observed at Yongsheng station. Modeling results of SR regular and disturbed spectra at different local times led to the similar conclusion.展开更多
The paper has developed and proposed a syn- thesis analysis method based on the robust satellite data analysis technique (RST) to detect seismic anomalies within the bi-angular advanced along-track scanning ra- diom...The paper has developed and proposed a syn- thesis analysis method based on the robust satellite data analysis technique (RST) to detect seismic anomalies within the bi-angular advanced along-track scanning ra- diometer (AATSR) gridded brightness temperature (BT) data based on spatial/temporal continuity analysis. The proposed methods have been applied to analyze the Yushu (Qinghai, China) earthquake occurred on 14th April 2010, and a full AATSR data-set of 8 years data from March 2003 to May 2010 with longitude from 91~E to 101°E and latitude from 28°N to 38°N has been analyzed. Combining with the tectonic explanation of spatial and temporal continuity of the abnormal phenomena, the analyzed results indicate that the infrared radiation anomalies detected by the AATSR BT data with nadir view appear and enhance gradually along with the development and occurring of the earthquake, especially along the Ganzi-Yushu fault, Nu River fault and Jiali-Chayu fault; more infrared anomalies along the earthquake fault zone (Lancangjiang fault and Ning Karma Monastery-Deqin fault) are detected using the proposed synthesis analysis method, which can also characterize the activity of seismic faults more precisely.展开更多
基金the National Natural Science Foundation of China(grant numbers 42004051,42274214,41904134).
文摘Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic anomalies in China and surrounding regions are relatively weak.Specialized research on each of these anomalies has been quite inadequate;their geological origins remain unclear,in particular their connection to tectonic activity in the Chinese and surrounding regions.We focus on six magnetic high anomalies over the(1)Tarim Basin,(2)Sichuan Basin(3)Great Xing’an Range,(4)Barmer Basin,(5)Central Myanmar Basin,and(6)Sunda and Banda Arcs,and a striking magnetic low anomaly along the southern part of the Himalayan-Tibetan Plateau.We have analyzed their geological origins by reviewing related research and by detailed comparison with geological results.The tectonic backgrounds for these anomalies belong to two cases:either ancient basin basement,or subduction-collision zone.However,the geological origins of large-scale regional magnetic anomalies are always subject to dispute,mainly because of limited surface exposure of sources,later tectonic destruction,and superposition of multi-phase events.
基金funded by National Key Technology R&D Program in the 11th Five Year Plan of China (2008BAC35B00)the international cooperation project(2009DFA21480)
文摘Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.
基金supported by Chinese National Science and Technology Support Pro-gram (2008BAC35B01)Basic Research Project from Institute of Earthquake Science,China Earthquake Ad-ministration (02092408)
文摘The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequency in the ionosphere.The ionosphere refractive index is also analyzed.The ionosphere above 70 km is considered to be homogeneous and anisotropic,and the reflection and transmission coefficient matrix is calculated using matrix method.Simultaneously the Booker quartic equation is solved to get the refractive index in the ionosphere.The results show that when the wave frequency is higher,it is easier to penetrate into the ionosphere from its bottom boundary and the propagation attenuation in the ionosphere is smaller.TE(traverse electric) wave and TM(traverse magnetic) wave can both penetrate into the ionosphere with a small incident angle,while TE wave can hardly transmit into the ionosphere when the incident angle is large.The transmission coefficient decreases as the geomagnetic inclination increases.TE and TM wave cannot penetrate into the ionosphere at magnetic equator.When the electron collision frequency is higher,it is easier for VLF wave to penetrate into the ionosphere and the attenuation of ordinary wave is weaker,which may be caused by the energy transportation between the waves and the particles.The ordinary(O) wave experiences severer attenuation than extraordinary(X) wave,and X wave is a penetration mode whereas O wave is a non-penetration mode in the ionosphere.All the results indicate that VLF wave with higher frequency is easier to penetrate into the ionosphere and to be recorded by the satellites at high latitude.It is hard for ULF and the lower frequency VLF wave to transmit into the ionosphere directly for the severe reflection and attenuation.It may transmit into the ionosphere with a small incident angle due to the nonlinear effect,for example,the interaction between the waves and the particles or cross modulation,and then propagate along the whistle duct with small attenuation.This work may be a preliminary theoretical exploration for the future calculation on the response of ground based VLF artificial transmitter in the ionosphere and further study on the seismic ionosphere coupling model.
基金supported by the Key Technology Research and Development Program of China (2008BAC35B02)
文摘Ionospheric TEC (total electron content) time series are derived from GPS measurements at 13 stations around the epicenter of the 2008 Wenchuan earthquake. Defining anomaly bounds for a sliding window by quartile and 2-standard deviation of TEC values, this paper analyzed the characteristics of ionospheric changes before and after the destructive event. The Neyman-Pearson signal detection method is employed to compute the probabilities of TEC abnormalities. Result shows that one week before the Wenchuan earthquake, ionospheric TEC over the epicenter and its vicinities displays obvious abnormal disturbances, most of which are positive anomalies. The largest TEC abnormal changes appeared on May 9, three days prior to the seismic event. Signal detection shows that the largest possibility ofTEC abnormity on May 9 is 50.74%, indicating that ionospheric abnormities three days before the main shock are likely related to the preparation process of the Ms8.0 Wenchuan earthquake.
文摘1.Introduction The China Seismo-Electromagnetic Satellite (CSES), which is also called ZhangHeng-1 (ZH-1), is the first Chinese space-borne platform dedicated to geophysical field measurement andearthquake monitoring by detecting variations in the electromagnetic environment of space. The CSES was launched successfully at15:51 on February 2, 2018, at China’s Jiuquan Satellite Launching Center.
基金supported by the International Science and Technology Cooperation Program of China(2010DFB20190)the Key Project of Earthquake Science(201008007)
文摘In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remote sensing, and seismo-ionospheric detecting. Many new monitoring data in this domain have been used, and new data processing methods have been developed to obtain high-precision images about crustal deformation, outgoing longwave radiation (OLR), surface latent heat flux (SLHF), and ionospheric parameters. The development in monitoring technology and data processing technique largely enriches earthquake research information and provides new tools for earthquake stereoscope monitoring system, especially on the space part. Finally, new developing trend in this area was introduced, and some key problems in future work were pointed out.
基金supported by the Civil Space Research project (ZH1 data validation: Ionospheric observatory theory)NFSC grant 41574139 and 41874174
文摘The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.
基金supported by the National Natural Science Foundation of China (41404058)
文摘The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.
基金supported by the National Natural Science Foundation of China (41404058)Beijing Natural Science Foundation (8184091)
文摘The Langmuir Probe(LAP), onboard the China Seismo-Electromagnetic Satellite(CSES), has been designed for in situ measurements of bulk parameters of the ionosphere plasma, the first Chinese application of in-situ measurement technology in the field of space exploration. The two main parameters measured by LAP are electron density and temperature. In this paper, a brief description of the LAP and its work mode are provided. Based on characteristics of the LAP, and assuming an ideal plasma environment, we introduce in detail a method used to invert the I-V curve; the data products that can be accessed by users are shown. Based on the LAP data available, this paper reports that events such as earthquakes and magnetic storms are preceded and followed by obvious abnormal changes. We suggest that LAP could provide a valuable data set for studies of space weather, seismic events, and the ionospheric environment.
基金supported by a research grant from the Institute of Crustal Dynamics, China Earthquake Administration (No. ZDJ2017-20)
文摘The high energetic particle package(HEPP) on-board the China Seismo-Electromagnetic Satellite(CSES) was launched on February 2, 2018. This package includes three independent detectors: HEPP-H, HEPP-L, and HEPP-X. HEPP-H and HEPP-L can detect energetic electrons from 100 keV to approximately 50 MeV and protons from 2 MeV to approximately 200 MeV. HEPP-X can measure solar X-rays in the energy range from 1 keV to approximately 20 keV. The objective of the HEPP payload was to provide a survey of energetic particles with high energy, pitch angle, and time resolutions in order to gain new insight into the space radiation environments of the near-Earth system. Particularly, the HEPP can provide new measurements of the magnetic storm related precipitation of electrons in the slot region, and the dynamics of radiation belts. In this paper, the HEPP scientific data sets are described and initial results are provided.The scientific data can show variations in the flux of energetic particles during magnetic storms.
基金supported by the State Key R&D Project (Grant No. 2016YFE0122200)the Civil Aerospace Scientific Research Project “Data calibration and validation for CSES, ”the Central-Level Public Welfare Research Projects of the Institute of Crustal Dynamics Institute, China Earthquake Administration (Grant No. ZDJ2017-21)
文摘Four levels of the data from the search coil magnetometer(SCM) onboard the China Seismo-Electromagnetic Satellite(CSES)are defined and described. The data in different levels all contain three components of the waveform and/or spectrum of the induced magnetic field around the orbit in the frequency range of 10 Hz to 20 kHz; these are divided into an ultra-low-frequency band(ULF,10–200 Hz), an extremely low frequency band(ELF, 200–2200 Hz), and a very low frequency band(VLF, 1.8–20 kHz). Examples of data products for Level-2, Level-3, and Level-4 are presented. The initial results obtained in the commission test phase demonstrated that the SCM was in a normal operational status and that the data are of high enough quality to reliably capture most space weather events related to low-frequency geomagnetic disturbances.
基金a project funded by China National Space Administration (CNSA)China Earthquake Administration (CEA)+1 种基金supported by the National Natural Science Foundation of China (Grant No. 42004137)the Natural Science Foundation of Sichuan Province of China (Grant No. 22NSFSC3946)
文摘This study presents signatures of seismo-ionospheric perturbations possibly related to the 14 July 2019 M_(w)7.2 Laiwui earthquake,detected by a cross-validation analysis of total electron content(TEC)data of the global ionospheric map(GIM)from GPS and plasma parameter data recorded by the China Seismo-Electromagnetic Satellite(CSES).After separating pre-seismic ionospheric phenomena from the ionospheric disturbances due to the magnetospheric and solar activities,we have identified three positive temporal anomalies,around the epicenter,at 1 day,3 days and 8 days before the earthquake(14 July 2019),along with a negative anomaly 6 days after the earthquake.These results agree well with the TEC spatial variations in latitude-longitude-time(LLT)maps.To confirm these anomalies further,we employed the moving mean method(MMM)to analyze ionospheric plasma parameters(electron,O^(+) and He^(+) densities)recorded by the Langmuir probe(LAP)and Plasma Analyzer Package(PAP)onboard the CSES.The analysis detected on,on Day Two,Day Four,and Day Seven before the earthquake,remarkable enhancements along the orbits around when in proximity to the epicenter.To make the investigations still more convincing,we compared the orbits on which anomalous readings were recorded to their corresponding four nearest revisiting orbits;the comparison did indeed indicate the existence of plasma parameter anomalies that appear to be associated with the Laiwui earthquake.All these results ilustrate that the unusual ionospheric perturbations detected through GPS and CSES data are possibly associated with the M_(w)7.2 Laiwui earthquake,which suggests that at least some earthquakes may be predicted by alertness to pre-seismic ionospheric anomalies over regions known to be at seismic risk.This case study also contributes additional information of value to our understanding of lithosphere-atmosphere-ionosphere coupling.
基金funded by the National Key Technology R & D Program(No.2008BAC35B05)
文摘The thermo-electric coefficients of twenty-six magnetite samples, formed either by magmatism or metamorphism, were tested by the thermo-electric instrument BHET -06. Results showed that the coef- ficient is of a constant value of about -0.05 mV/℃. It is emphasized that because every magnetite grain was tested randomly, the coefficient is independent of the crystallographic direction. This fact means the thermal voltage generated from a single magnetite crystal can be accumulated, and as a result a new thermo-electric field can arise when a gradient thermal field exists and is active within the earth's crust. Because magnetite is widespread in the earth's crust (generally appearing more in the middle-lower crust), there is more-thanrandom probability that the additional thermo-electric field can be generated when certain thermal conditions are fulfilled. We, therefore, used the thermo-electric effect of magnetite to study the mechanism responsible for the presence of abnormal geo-electric fields during earthquake formation and occurrence, because gradient thermal fields always exist before earthquakes. The possible presence of additional thermo-electric fields was calculated under theoretical seismological conditions, using the following calculation formula:E= - 0.159(σ×△T×Ф×ρ2×[[(h^2 - 2x^2)cos α + 3hxsin α]/ρ1 (h^2 +x^2)^5/2). In the above formula, σ is thermo-electric coefficient of magnetite, △T is the temperature difference acting on it, Ф is a sectional area on a block of magnetite vertically perpendicular to the direction of the thermal current, ρ1 and ρ2 are the respective resistivities of magnetite and the crust, and h, α, and x, respectively, h is the depth of embedded magnetite block. α means the angle created by the horizontal line and ligature of the two poles of magnetite block, and x is the distance from observation point to projective center point of the magnetite block on earth surface. According to simulations calculated with this formula, additional thermo-electric field intensity may reach as high as n to n × 10^2 mV/km. This field is strong enough to cause obvious anomalies in the background geo-electric field, and can be easy probed by earthquake monitoring equipment. Therefore, we hypothesize that geo-electric abnormalities which occur during earthquakes may be caused by the thermo-electric effect of magnetite.
文摘High energy particles are the main target of satellite space exploration; particle storm events are closely related to solar activity,cosmic ray distribution, and magnetic storms. The commonly seen energetic particle(electron) precipitation anomalies include mainly the inner and outer Van Allen radiation belts, the South Atlantic Anomaly, and the anomalous stripes excited by artificial electromagnetic waves. The China Seismo-Electromagnetic Satellite(CSES), launched in February of 2018, provides a platform for studying ionospheric particle disturbances. This paper reports the first studies of electron precipitation phenomenon based on high energy particle data from the CSES. We find that the global distribution of electron fluxes in the low energy band(0.1–3 MeV) can relatively well reflect the anomalous precipitation belt, which is consistent with results based on the DEMETER satellite, indicating that the quality of the lowenergy band payload of the CSES is good. In addition, this paper makes an in-depth study of the electron precipitation belt excited by the NWC artificial VLF electromagnetic transmitter located in Australia, which appears as a typical wisp structure on the energy spectrum. The magnetic shell parameter L corresponding to the precipitation belt ranges from 1.44 to 1.74, which is close to the L value(~1.45) of the NWC transmitter; the energy of the precipitation electrons is between 100 keV and 361.57 keV, among which the precipitation of 213.73 keV electrons is most conspicuous.
基金funded by Russian Foundation for Basic Research according to research project No.15-55-53104National Natural Science Foundation of China according to International cooperation project No.41511130032
文摘Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density (10-7-10-s A/m^2) generated by the pulsed power systems at the epicenter depth (5-10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory "earthquake" triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory "earthquake" (sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98-0.99 of its critical value. The threshold of electric triggering action is about 20 A/m^2 that is 7-8 orders of magnitude higher than estimated electric current density for Bishkek test site (Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.
基金supported by the Basic Scientific Research Special Fund from Institute of Earthquake Science, China Earthquake Administration (02092403 and 0207690224)
文摘Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, using a pair of Europe remote-sensing satellite (ERS)-1/2 tandem SAR images acquired on 6 and 7 April 1996. A portion of the In- SAR-derived DEM is selected and compared with the 1:50 000 DEM to determine the precision of the InSAR-derived DEM. The comparison indicates that the root mean squared errors (RMSE), which are used to evaluate error, are about 35, 60, 10, and 15 m in the studied area, mountainous area, basin area and near-fault area, respectively, suggesting that obvious errors are mainly in mountainous area. Besides, the limitation of InSAR technology to generate DEM is analyzed. Our investigation shows that InSAR is an effective tool in geodesy and an important complement to field surveying in some dangerous areas.
文摘The electromagnetic satellite Zhangheng 01(ZH-01) was successfully launched on February 2, 2018. The GNSS Radio Occultation(GRO) receiver on board the satellite is able to observe the occultation events of GPS and BeiDou navigation satellites. We analyzed the data acquired during the in-orbit testing period. We concludes that the GRO ionosphere inversion results are reasonable,the trend is correct, the satellite can observe about 600 ionosphere occultation events each day. The global coverage of more than 30000 consecutive GRO events in more than two months were analyzed and compared with COSMIC observations: both the GRO and COSMIC occultation can realize global coverage: the Nm F2 and Hm F2 global distributions are similar and change obviously with latitude. We used three digisondes at different latitudes to analyze and compare the spatio-temporally consistent GRO data: the RMSE of GRO Nm F2 relative to digisonde is better than 9.41%, the correlation coefficient is better than 0.8682: the relative RMSE of Hm F2 is better than 7.80% and the correlation coefficient is better than 0.7066.
基金supported by State Grid Corporation’s Science and Technology Project“Research and Demonstration of Technical Measures for Improving Voltage Supporting Capacity of Large-scale Urban Power Grid”(52094016000Y)
文摘A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.
基金supported by the Basic Research Project of Institute of Earthquake Science,CEA (2013IES0101,2010IES0202)
文摘Schumann resonance (SR) is an electromag- netic resonance phenomenon in the Earth-ionosphere cavity exited by global lightning activities when the wavelength matches the circumference of the Earth, and the lowest four peak frequencies of SR are about 8, 14, 20, and 26 Hz. This article presents the new observational data of SR in China. The observations of two horizontal mag- netic components (BNs and BEw) in the frequency band range of 3-29 Hz at Yongsheng observatory (26.7°N, 100.8°E) in southwestern China were mainly analyzed. It is found that the SR amplitudes at peak frequencies in BNs and BEw components all showed diurnal and seasonal variations, and that the SR amplitude in BNS component is always higher than that in BEw component. Diurnal vari- ation of SR amplitude around equinoxes and solstices inBNs component is related to active intervals of three global thunderstorm centers, while SR amplitude in BEw com- ponent is the most significant at around 16 LT, corre- sponding to Asian center. SR amplitudes both in BNs and BEw components increase in the rainy season from May to September. In addition, the SR anomalies in association with the 2011 Japan earthquake are exhibited. The anom- alous effect was characterized by an increase in amplitude at the lowest four SR modes beginning at 4 days before this earthquake. Upon analyzing the wave interference between the direct wave and disturbed wave scattered by localized modification of lower ionosphere over the epicenter, Asian and African thunderstorm centers are found to contribute to anomalous effect observed at Yongsheng station. Modeling results of SR regular and disturbed spectra at different local times led to the similar conclusion.
基金founded by Basic Science Research Plan of Institute of Earthquake Science,China Earthquake Administration (Grant No. 2010IES0203)Civil Specific Advance Research Program on Science,Technology,and Industry for National Defense (Grant No. 60128303)
文摘The paper has developed and proposed a syn- thesis analysis method based on the robust satellite data analysis technique (RST) to detect seismic anomalies within the bi-angular advanced along-track scanning ra- diometer (AATSR) gridded brightness temperature (BT) data based on spatial/temporal continuity analysis. The proposed methods have been applied to analyze the Yushu (Qinghai, China) earthquake occurred on 14th April 2010, and a full AATSR data-set of 8 years data from March 2003 to May 2010 with longitude from 91~E to 101°E and latitude from 28°N to 38°N has been analyzed. Combining with the tectonic explanation of spatial and temporal continuity of the abnormal phenomena, the analyzed results indicate that the infrared radiation anomalies detected by the AATSR BT data with nadir view appear and enhance gradually along with the development and occurring of the earthquake, especially along the Ganzi-Yushu fault, Nu River fault and Jiali-Chayu fault; more infrared anomalies along the earthquake fault zone (Lancangjiang fault and Ning Karma Monastery-Deqin fault) are detected using the proposed synthesis analysis method, which can also characterize the activity of seismic faults more precisely.