As a versatile tool for trapping and manipulating neutral particles, optical tweezers have been studied in a broad range of fields such as molecular biology, nanotechnology, and experimentally physics since Arthur Ash...As a versatile tool for trapping and manipulating neutral particles, optical tweezers have been studied in a broad range of fields such as molecular biology, nanotechnology, and experimentally physics since Arthur Ashkin pioneered the field in the early 1970 s. By levitating the "sensor" with a laser beam instead of adhering it to solid components, excellent environmental decoupling is achieved. Furthermore, unlike levitating particles in liquid or air, optical tweezers operating in vacuum are isolated from environmental thermal noise, thus eliminating the primary source of dissipation present for most inertial sensors. This attracted great attention in both fundamental and applied physics. In this paper we review the history and the basic concepts of optical tweezers in vacuum and provide an overall understanding of the field.展开更多
基金Project supported by the Joint Fund of Ministry of Education,China(No.6141A02011604)the Fundamental Research Funds for the Central Universities,China(Nos.2016XZZX00401 and 2018FZA5002)the National Program for Special Support of Top-Notch Young Professionals,China
文摘As a versatile tool for trapping and manipulating neutral particles, optical tweezers have been studied in a broad range of fields such as molecular biology, nanotechnology, and experimentally physics since Arthur Ashkin pioneered the field in the early 1970 s. By levitating the "sensor" with a laser beam instead of adhering it to solid components, excellent environmental decoupling is achieved. Furthermore, unlike levitating particles in liquid or air, optical tweezers operating in vacuum are isolated from environmental thermal noise, thus eliminating the primary source of dissipation present for most inertial sensors. This attracted great attention in both fundamental and applied physics. In this paper we review the history and the basic concepts of optical tweezers in vacuum and provide an overall understanding of the field.