Developing the methodologies that allow for safe and effective delivery of therapeutic drugs to target sites is a very important research area in cancer therapy.In this study,polyethylene glycol(PEG)-coated magnetic p...Developing the methodologies that allow for safe and effective delivery of therapeutic drugs to target sites is a very important research area in cancer therapy.In this study,polyethylene glycol(PEG)-coated magnetic polymeric liposome(MPL)nanoparticles(NPs)assembled from octadecyl quatemized carboxymethyl chitosan(OQC),PEGylated OQC,cholesterol,and magnetic NPs,and functionalized with epithelial growth factor receptor(EGFR)peptide,were successfully prepared for in-vivo liver targeting.The two-step liver targeting strategy,based on both magnetic force and EGFR peptide conjugation,was evaluated in a subcutaneous hepatocellular carcinoma model of nude mouse.The results showed that EGFR-conjugated MPLs not only accumulated in the liver by magnetic force,but could also diffuse into tumor cells as a result of EGFR targeting.In addition,paclitaxel(PTX)was incorporated into small EGFR-conjugated MPLs(102.0土0.7 nm),resulting in spherical particles with high drug encapsulation efficiency(>90%).The use of the magnetic targeting for enhancing the transport of PTX-loaded EGFR-conjugated MPLs to the tumor site was further confirmed by detecting PTX levels.In conclusion,PTX-loaded EGFR-conjugated MPLs could potentially be used as an effective drug delivery system for targeted liver cancer therapy.展开更多
基金the Research Program Foundation of the Department of Education of Fujian Province for Young Talents(No.JK2017021)the Training Program of Department of Health of Fujian Province for Young Talents(No.2017-ZQN-41).
文摘Developing the methodologies that allow for safe and effective delivery of therapeutic drugs to target sites is a very important research area in cancer therapy.In this study,polyethylene glycol(PEG)-coated magnetic polymeric liposome(MPL)nanoparticles(NPs)assembled from octadecyl quatemized carboxymethyl chitosan(OQC),PEGylated OQC,cholesterol,and magnetic NPs,and functionalized with epithelial growth factor receptor(EGFR)peptide,were successfully prepared for in-vivo liver targeting.The two-step liver targeting strategy,based on both magnetic force and EGFR peptide conjugation,was evaluated in a subcutaneous hepatocellular carcinoma model of nude mouse.The results showed that EGFR-conjugated MPLs not only accumulated in the liver by magnetic force,but could also diffuse into tumor cells as a result of EGFR targeting.In addition,paclitaxel(PTX)was incorporated into small EGFR-conjugated MPLs(102.0土0.7 nm),resulting in spherical particles with high drug encapsulation efficiency(>90%).The use of the magnetic targeting for enhancing the transport of PTX-loaded EGFR-conjugated MPLs to the tumor site was further confirmed by detecting PTX levels.In conclusion,PTX-loaded EGFR-conjugated MPLs could potentially be used as an effective drug delivery system for targeted liver cancer therapy.