期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Machine learning for prediction of retained austenite fraction and optimization of processing in quenched and partitioned steels
1
作者 Shuai Wang Jie Li +3 位作者 Li-yang Zeng xun-wei zuo Nai-lu Chen Yong-hua Rong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2002-2013,共12页
The metastable retained austenite(RA)plays a significant role in the excellent mechanical performance of quenching and partitioning(Q&P)steels,while the volume fraction of RA(V_(RA))is challengeable to directly pr... The metastable retained austenite(RA)plays a significant role in the excellent mechanical performance of quenching and partitioning(Q&P)steels,while the volume fraction of RA(V_(RA))is challengeable to directly predict due to the complicated relationships between the chemical composition and process(like quenching temperature(Qr)).A Gaussian process regression model in machine learning was developed to predict V_(RA),and the model accuracy was further improved by introducing a metallurgical parameter of martensite fraction(fo)to accurately predict V_(RA) in Q&P steels.The developed machine learning model combined with Bayesian global optimization can serve as another selection strategy for the quenching temperature,and this strategy is very effcient as it found the"optimum"Qr with the maximum V_(RA) using only seven consecutive iterations.The benchmark experiment also reveals that the developed machine learning model predicts V_(RA) more accurately than the popular constrained carbon equilibrium thermodynamic model,even better than a thermo-kinetic quenching-partitioning-tempering-local equilibrium model. 展开更多
关键词 Q&P steel Retained austenite fraction Machine learning Quenching temperature Gaussian process regression model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部