The demand for sustainable functional materials with an eco-friendly preparation process is on the rise.Lignocellulosics has been attributed as the most sustainable bioresource on earth which can meet the stringentreq...The demand for sustainable functional materials with an eco-friendly preparation process is on the rise.Lignocellulosics has been attributed as the most sustainable bioresource on earth which can meet the stringentrequirements of functionalization. However, cellulose nanomaterials obtained from lignocellulosics which has reachedadvanced stages as a sustainable functional material is challenged by its preparation procedures. These procedures can notbest be described as sustainable and eco-friendly owning to lots of energy and chemicals spent in the pre-treatment andpurification processes. These processes are intended to aid fractionation into the major components in order to removelignin and hemicellulose for the production of cellulose nanomaterials. This work is thus centred on reviewing theprogress achieved in introducing a new cellulose nanomaterial containing lignin. The preparation processes, propertiesand applications of this new lignin-containing cellulose nanomaterial will be discussed in order to chart a sustainablepreparation route for cellulose nanomaterials.展开更多
基金National Natural Science Foundation of China(No.51733009)Chinese Academy of Science-President’s International Fellowship Initiative(CAS-PIFI)Postdoctoral Research in China(No.2017PS0019).
文摘The demand for sustainable functional materials with an eco-friendly preparation process is on the rise.Lignocellulosics has been attributed as the most sustainable bioresource on earth which can meet the stringentrequirements of functionalization. However, cellulose nanomaterials obtained from lignocellulosics which has reachedadvanced stages as a sustainable functional material is challenged by its preparation procedures. These procedures can notbest be described as sustainable and eco-friendly owning to lots of energy and chemicals spent in the pre-treatment andpurification processes. These processes are intended to aid fractionation into the major components in order to removelignin and hemicellulose for the production of cellulose nanomaterials. This work is thus centred on reviewing theprogress achieved in introducing a new cellulose nanomaterial containing lignin. The preparation processes, propertiesand applications of this new lignin-containing cellulose nanomaterial will be discussed in order to chart a sustainablepreparation route for cellulose nanomaterials.