Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly li...Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly limited by the structural instability of the highly reduced species.By combining the extendedπ-conjugation structure of the anolytes and the enhanced aromaticity of the highly reduced species,we reported a series of highly conjugated and inexpensive arylene diimide derivatives(NDI,PDI,and TPDI)as novel two-electron storage anolyte materials for ultrastable AORFBs.Matched with(ferrocenylmethyl)trimethylammonium chloride(FcNCl)as catholyte,arylene diimide derivative-based AORFBs showed the highest stability in two-electron AORFBs to date.The NDI/FcNCl-based AORFB delivered 98.44%capacity retention at 40 mA cm^(−2)for 350 cycles;TPDI/FcNCl-based AORFB also showed remarkable stability with 97.22%capacity retention at 20 mA cm^(−2)over 200 cycles.This finding lays the theoretical foundation and offers a reference for improving the stability of two-electron AORFBs.展开更多
基金supported by the Natural Science Foundation of China(grant nos.22175138 and 21875180)the National Key Research and Development Program of China(grant no.2021YFB3200700)+4 种基金the Key Research and Development Program of Shaanxi(grant no.2021GXLH-Z023)the Independent Innovation Capability Improvement Project of Xi’an Jiaotong University(grant no.PY3A066)the Fundamental Research Funds for the Central Universities(grant no.xhj032021008-03)the Regional Innovation Capability Guidance Program of Shaanxi Province the Fundamental(grant no.2022QFY08-01)the Research Funds for the Central Universities(grant no.xzy022022001).
文摘Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly limited by the structural instability of the highly reduced species.By combining the extendedπ-conjugation structure of the anolytes and the enhanced aromaticity of the highly reduced species,we reported a series of highly conjugated and inexpensive arylene diimide derivatives(NDI,PDI,and TPDI)as novel two-electron storage anolyte materials for ultrastable AORFBs.Matched with(ferrocenylmethyl)trimethylammonium chloride(FcNCl)as catholyte,arylene diimide derivative-based AORFBs showed the highest stability in two-electron AORFBs to date.The NDI/FcNCl-based AORFB delivered 98.44%capacity retention at 40 mA cm^(−2)for 350 cycles;TPDI/FcNCl-based AORFB also showed remarkable stability with 97.22%capacity retention at 20 mA cm^(−2)over 200 cycles.This finding lays the theoretical foundation and offers a reference for improving the stability of two-electron AORFBs.