Electrospinning is widely accepted as a technique for the fabrication of nanofibrous three-dimensional(3D)scaffolds which mimic extracellular matrix(ECM)microenvironment for tissue engineering(TE).Unlike normal densel...Electrospinning is widely accepted as a technique for the fabrication of nanofibrous three-dimensional(3D)scaffolds which mimic extracellular matrix(ECM)microenvironment for tissue engineering(TE).Unlike normal densely-packed two-dimensional(2D)nanofibrous membranes,3D electrospun nanofiber scaffolds are dedicated to more precise spatial control,endowing the scaffolds with a sufficient porosity and 3D environment similar to the in vivo settings as well as optimizing the properties,including injectability,compressibility,and bioactivity.Moreover,the 3D morphology regulates cellular interaction and mediates growth,migration,and differentiation of cell for matrix remodeling.The variation among scaffold structures,functions and applications depends on the selection of electrospinning materials and methods as well as on the post-processing of electrospun scaffolds.This review summarizes the recent new forms for building electrospun 3D nanofiber scaffolds for TE applications.A variety of approaches aimed at the fabrication of 3D electrospun scaffolds,such as multilay-ering electrospinning,sacrificial agent electrospinning,wet electrospinning,ultrasound-enhanced electrospinning as well as post-processing techniques,including gas foaming,ultrasonication,short fiber assembly,3D printing,electrospraying,and so on are discussed,along with their advantages,limitations and applications.Meanwhile,the current challenges and prospects of 3D electrospun scaffolds are rationally discussed,providing an insight into developing the vibrant fields of biomedicine.展开更多
基金The authors would like to thank the financial support from National Nature Science Foundation of China(No.32050410286)Science and Technology Commission of Shanghai Municipality(No.20S31900900,20DZ2254900)+2 种基金Sino German Science Foundation Research Exchange Center(M-0263)National Advanced Functional Fiber Innovation Center(2021-fx020301)International Cooperation of 2021-2022 China and Poland Science and Technology Personnel Exchange Program(No.17).
文摘Electrospinning is widely accepted as a technique for the fabrication of nanofibrous three-dimensional(3D)scaffolds which mimic extracellular matrix(ECM)microenvironment for tissue engineering(TE).Unlike normal densely-packed two-dimensional(2D)nanofibrous membranes,3D electrospun nanofiber scaffolds are dedicated to more precise spatial control,endowing the scaffolds with a sufficient porosity and 3D environment similar to the in vivo settings as well as optimizing the properties,including injectability,compressibility,and bioactivity.Moreover,the 3D morphology regulates cellular interaction and mediates growth,migration,and differentiation of cell for matrix remodeling.The variation among scaffold structures,functions and applications depends on the selection of electrospinning materials and methods as well as on the post-processing of electrospun scaffolds.This review summarizes the recent new forms for building electrospun 3D nanofiber scaffolds for TE applications.A variety of approaches aimed at the fabrication of 3D electrospun scaffolds,such as multilay-ering electrospinning,sacrificial agent electrospinning,wet electrospinning,ultrasound-enhanced electrospinning as well as post-processing techniques,including gas foaming,ultrasonication,short fiber assembly,3D printing,electrospraying,and so on are discussed,along with their advantages,limitations and applications.Meanwhile,the current challenges and prospects of 3D electrospun scaffolds are rationally discussed,providing an insight into developing the vibrant fields of biomedicine.