Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source a...Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.展开更多
Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance *1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together t...Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance *1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2 u dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Calculated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.展开更多
Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impac...Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impact of different synthetic strategies on the fundamental nature of NCs,such as nonradiative recombination centers,remains poorly understood.In this study,we investigated the photophysical properties of CsPbBr_(3) NCs synthesized using two distinct methods,hot injection and ligand-assisted reprecipitation,at the individual particle level.We observed different blinking behaviors under specific photoexcitation power densities and proposed,through intensity-lifetime analysis and Monte-Carlo simulations,that these different synthetic strategies can fabricate NCs with similar crystal structures but distinct surface quenchers with varying energy levels,which significantly affected the photo-induced blinking-down and blinking-up behaviors in individual NCs.Our findings indicate a practical and feasible approach for controlling defect engineering in perovskite NCs,with significant implications for their use in optoelectronic and other technological applications.展开更多
基金supported by the National Key Research and Development Program of China(2016YFC0102700)National Natural Science Foundation of China(21171117,21271181,21473240,and 81270209)+1 种基金Medical-Engineering Crossover Fund of Shanghai Jiao Tong University(YG2015MS51 and YG2014MS66)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning
文摘Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.
基金supported by the National Natural Science Foundation of China (NSFC) (grant no. 61178014, 11274231, and 21271181)the key project of the Ministry of Education of China under grant 109061+1 种基金Ministry of Science and Technology of China (Inter-governmental S&T Cooperation Project, grant no. 6–10)Thousand Youth Talents Program of China
文摘Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance *1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2 u dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Calculated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Nos.22073046,62011530133)the Fundamental Research Funds for the Central Universities(Nos.020514380256,020514380278)+1 种基金the Double-Innovation Doctor Program of Jiangsu Province,China(No.JSSCBS20211151)the Funding for School-level Research Projects of Yancheng Institute of Technology(No.xjr2021062).
文摘Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impact of different synthetic strategies on the fundamental nature of NCs,such as nonradiative recombination centers,remains poorly understood.In this study,we investigated the photophysical properties of CsPbBr_(3) NCs synthesized using two distinct methods,hot injection and ligand-assisted reprecipitation,at the individual particle level.We observed different blinking behaviors under specific photoexcitation power densities and proposed,through intensity-lifetime analysis and Monte-Carlo simulations,that these different synthetic strategies can fabricate NCs with similar crystal structures but distinct surface quenchers with varying energy levels,which significantly affected the photo-induced blinking-down and blinking-up behaviors in individual NCs.Our findings indicate a practical and feasible approach for controlling defect engineering in perovskite NCs,with significant implications for their use in optoelectronic and other technological applications.